BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36694349)

  • 1. Tetrahedral framework nucleic acids inhibit pathological neovascularization and vaso-obliteration in ischaemic retinopathy via PI3K/AKT/mTOR signalling pathway.
    Zhou X; Lai Y; Xu X; Wang Q; Sun L; Chen L; Li J; Li R; Luo D; Lin Y; Ding X
    Cell Prolif; 2023 Jul; 56(7):e13407. PubMed ID: 36694349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrahedral framework nucleic acids-based delivery of MicroRNA-22 inhibits pathological neovascularization and vaso-obliteration by regulating the Wnt pathway.
    Liu X; Xu X; Lai Y; Zhou X; Chen L; Wang Q; Jin Y; Luo D; Ding X
    Cell Prolif; 2024 Jul; 57(7):e13623. PubMed ID: 38433462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahedral Framework Nucleic Acids Ameliorate Insulin Resistance in Type 2 Diabetes Mellitus
    Li Y; Tang Y; Shi S; Gao S; Wang Y; Xiao D; Chen T; He Q; Zhang J; Lin Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40354-40364. PubMed ID: 34410099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidative and Angiogenesis-Promoting Effects of Tetrahedral Framework Nucleic Acids in Diabetic Wound Healing with Activation of the Akt/Nrf2/HO-1 Pathway.
    Lin S; Zhang Q; Li S; Zhang T; Wang L; Qin X; Zhang M; Shi S; Cai X
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11397-11408. PubMed ID: 32083455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GBP2 inhibits pathological angiogenesis in the retina via the AKT/mTOR/VEGFA axis.
    Xu X; Ding X; Wang Z; Ye S; Xu J; Liang Z; Luo R; Xu J; Li X; Ren Z
    Microvasc Res; 2024 Jul; 154():104689. PubMed ID: 38636926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annexin A2 promotes development of retinal neovascularization through PI3K/ AKT signaling pathway.
    Li C; Zhao Z; Zhao S
    Curr Eye Res; 2022 Apr; 47(4):579-589. PubMed ID: 34894941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy.
    Di Y; Zhang Y; Nie Q; Chen X
    Int J Mol Med; 2015 Dec; 36(6):1507-18. PubMed ID: 26459773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of CCN1-enhanced retinal neovascularization in oxygen-induced retinopathy through PI3K/Akt-VEGF signaling pathway.
    Di Y; Zhang Y; Yang H; Wang A; Chen X
    Drug Des Devel Ther; 2015; 9():2463-73. PubMed ID: 25995618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment effect of DNA framework nucleic acids on diffuse microvascular endothelial cell injury after subarachnoid hemorrhage.
    Chen R; Wen D; Fu W; Xing L; Ma L; Liu Y; Li H; You C; Lin Y
    Cell Prolif; 2022 Apr; 55(4):e13206. PubMed ID: 35187748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway.
    Zhao K; Jiang Y; Zhang J; Shi J; Zheng P; Yang C; Chen Y
    Cell Cycle; 2022 Oct; 21(19):2091-2108. PubMed ID: 35695424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering combinations of PI3K/AKT/mTOR pathway drugs augmenting anti-angiogenic efficacy in vivo.
    Sasore T; Kennedy B
    PLoS One; 2014; 9(8):e105280. PubMed ID: 25144531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthine derivative KMUP-1 ameliorates retinopathy.
    Yeh JL; Kuo CH; Shih PW; Hsu JH; I-Chen P; Huang YH
    Biomed Pharmacother; 2023 Sep; 165():115109. PubMed ID: 37406513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Novel VEGF121-VEGF165 Fusion Attenuates Angiogenesis and Drug Resistance via Targeting VEGFR2-HIF-1α-VEGF165/Lon Signaling Through PI3K-AKT-mTOR Pathway.
    Tsai JL; Lee YM; Pan CY; Lee AY
    Curr Cancer Drug Targets; 2016; 16(3):275-86. PubMed ID: 26882030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PF4 antagonizes retinal neovascularization via inhibiting PRAS40 phosphorylation in a mouse model of oxygen-induced retinopathy.
    Cai S; Yang Q; Cao Y; Li Y; Liu J; Wang J; Zhang X; Liu L; Li X; Zhang Y
    Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165604. PubMed ID: 31740404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Hypoxia-inducible Factor 1α Inhibitor KC7F2 Attenuates Oxygen-induced Retinal Neovascularization.
    Tang X; Cui K; Lu X; Wu P; Yu S; Yang B; Xu Y; Liang X
    Invest Ophthalmol Vis Sci; 2022 Jun; 63(6):13. PubMed ID: 35695808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of microRNA-155 attenuates retinal neovascularization via the PI3K/Akt pathway.
    Zhuang Z; Xiao-qin ; Hu H; Tian SY; Lu ZJ; Zhang TZ; Bai YL
    Mol Vis; 2015; 21():1173-84. PubMed ID: 26539029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway.
    Chen QY; Jiao DM; Wu YQ; Chen J; Wang J; Tang XL; Mou H; Hu HZ; Song J; Yan J; Wu LJ; Chen J; Wang Z
    Oncotarget; 2016 Apr; 7(14):18247-61. PubMed ID: 26919096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mangiferin inhibits cell migration and angiogenesis via PI3K/AKT/mTOR signaling in high glucose‑ and hypoxia‑induced RRCECs.
    Shi J; Lv H; Tang C; Li Y; Huang J; Zhang H
    Mol Med Rep; 2021 Jun; 23(6):. PubMed ID: 33899114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis.
    Yao X; Yan C; Zhang L; Li Y; Wan Q
    Medicine (Baltimore); 2018 Apr; 97(16):e0473. PubMed ID: 29668625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-level laser therapy induces human umbilical vascular endothelial cell proliferation, migration and tube formation through activating the PI3K/Akt signaling pathway.
    Li Y; Xu Q; Shi M; Gan P; Huang Q; Wang A; Tan G; Fang Y; Liao H
    Microvasc Res; 2020 May; 129():103959. PubMed ID: 31734375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.