BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 36694462)

  • 1. Immunomodulatory effect of locoregional therapy in the tumor microenvironment.
    Xie L; Meng Z
    Mol Ther; 2023 Apr; 31(4):951-969. PubMed ID: 36694462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity.
    Abe S; Nagata H; Crosby EJ; Inoue Y; Kaneko K; Liu CX; Yang X; Wang T; Acharya CR; Agarwal P; Snyder J; Gwin W; Morse MA; Zhong P; Lyerly HK; Osada T
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35039461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The immune response of hepatocellular carcinoma after locoregional and systemic therapies: The available combination option for immunotherapy.
    Duan Y; Zhang H; Tan T; Ye W; Yin K; Yu Y; Kang M; Yang J; Liao R
    Biosci Trends; 2024 Jan; 17(6):427-444. PubMed ID: 37981319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Synergistic Effect of Interventional Locoregional Treatments and Immunotherapy for the Treatment of Hepatocellular Carcinoma.
    Brandi N; Renzulli M
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy.
    Francis DM; Manspeaker MP; Schudel A; Sestito LF; O'Melia MJ; Kissick HT; Pollack BP; Waller EK; Thomas SN
    Sci Transl Med; 2020 Sep; 12(563):. PubMed ID: 32998971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review.
    Dar TB; Biteghe FAN; Kakar-Bhanot R; Aniogo EC; Malindi Z; Akinrinmade OA; Chalomie NET; Kombe Kombe AJ; Aboughe Angone S; Ndong JMN; Ndong JD
    Clin Transl Oncol; 2022 Dec; 24(12):2255-2271. PubMed ID: 35913663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector Aided Microenvironment programming (VAMP): reprogramming the TME with MVA virus expressing IL-12 for effective antitumor activity.
    Seclì L; Infante L; Nocchi L; De Lucia M; Cotugno G; Leoni G; Micarelli E; Garzia I; Avalle L; Sdruscia G; Troise F; Allocca S; Romano G; Scarselli E; D'Alise AM
    J Immunother Cancer; 2023 Apr; 11(4):. PubMed ID: 37117006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy.
    Xie G; Cheng T; Lin J; Zhang L; Zheng J; Liu Y; Xie G; Wang B; Yuan Y
    J Immunother Cancer; 2018 Sep; 6(1):88. PubMed ID: 30208943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose radiation therapy mobilizes antitumor immunity: New findings and future perspectives.
    Zhou L; Liu Y; Wu Y; Yang X; Spring Kong FM; Lu Y; Xue J
    Int J Cancer; 2024 Apr; 154(7):1143-1157. PubMed ID: 38059788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME).
    Bretz AC; Parnitzke U; Kronthaler K; Dreker T; Bartz R; Hermann F; Ammendola A; Wulff T; Hamm S
    J Immunother Cancer; 2019 Nov; 7(1):294. PubMed ID: 31703604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.
    Yang J; Zhang C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1612. PubMed ID: 32114718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors.
    Heinhuis KM; Ros W; Kok M; Steeghs N; Beijnen JH; Schellens JHM
    Ann Oncol; 2019 Feb; 30(2):219-235. PubMed ID: 30608567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming Immune Checkpoint Blockade Resistance via EZH2 Inhibition.
    Kim HJ; Cantor H; Cosmopoulos K
    Trends Immunol; 2020 Oct; 41(10):948-963. PubMed ID: 32976740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing Pyroptosis for Cancer Immunotherapy.
    Bourne CM; Taabazuing CY
    Cells; 2024 Feb; 13(4):. PubMed ID: 38391959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Mechanism of Stimulating and Mobilizing the Immune System Enhancing the Anti-Tumor Immunity.
    Wu Z; Li S; Zhu X
    Front Immunol; 2021; 12():682435. PubMed ID: 34194437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune checkpoint-targeted drug conjugates: A promising tool for remodeling tumor immune microenvironment.
    Choi J; Jang H; Choi J; Choi Y; Yang Y; Shim MK; Kim SH
    J Control Release; 2023 Jul; 359():85-96. PubMed ID: 37230294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.