These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36694464)

  • 1. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice.
    Perkovic M; Gawletta S; Hempel T; Brill S; Nett E; Sahin U; Beissert T
    Mol Ther; 2023 Jun; 31(6):1636-1646. PubMed ID: 36694464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity.
    Beissert T; Perkovic M; Vogel A; Erbar S; Walzer KC; Hempel T; Brill S; Haefner E; Becker R; Türeci Ö; Sahin U
    Mol Ther; 2020 Jan; 28(1):119-128. PubMed ID: 31624015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-Amplifying RNA: A Journey from Alphavirus Research to Future Vaccines.
    Yıldız A; Răileanu C; Beissert T
    Viruses; 2024 Mar; 16(4):. PubMed ID: 38675846
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Yıldız A; Hasani A; Hempel T; Köhl N; Beicht A; Becker R; Hubich-Rau S; Suchan M; Poleganov MA; Sahin U; Beissert T
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102162. PubMed ID: 38545619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bivalent Trans-Amplifying RNA Vaccine Candidate Induces Potent Chikungunya and Ross River Virus Specific Immune Responses.
    Schmidt C; Hastert FD; Gerbeth J; Beissert T; Sahin U; Perkovic M; Schnierle BS
    Vaccines (Basel); 2022 Aug; 10(9):. PubMed ID: 36146452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections.
    Schmidt C; Haefner E; Gerbeth J; Beissert T; Sahin U; Perkovic M; Schnierle BS
    Mol Ther Nucleic Acids; 2022 Jun; 28():743-754. PubMed ID: 35664702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses.
    Vogel AB; Lambert L; Kinnear E; Busse D; Erbar S; Reuter KC; Wicke L; Perkovic M; Beissert T; Haas H; Reece ST; Sahin U; Tregoning JS
    Mol Ther; 2018 Feb; 26(2):446-455. PubMed ID: 29275847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin.
    Brazzoli M; Magini D; Bonci A; Buccato S; Giovani C; Kratzer R; Zurli V; Mangiavacchi S; Casini D; Brito LM; De Gregorio E; Mason PW; Ulmer JB; Geall AJ; Bertholet S
    J Virol; 2016 Jan; 90(1):332-44. PubMed ID: 26468547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans-Amplifying RNA Vaccines Against Infectious Diseases: A Comparison with Non-Replicating and Self-Amplifying RNA.
    Zimmermann L; Erbar S
    Methods Mol Biol; 2024; 2786():135-144. PubMed ID: 38814392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets.
    McKay PF; Zhou J; Frise R; Blakney AK; Bouton CR; Wang Z; Hu K; Samnuan K; Brown JC; Kugathasan R; Yeow J; Stevens MM; Barclay WS; Tregoning JS; Shattock RJ
    Oxf Open Immunol; 2022; 3(1):iqac004. PubMed ID: 35996628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge.
    Magini D; Giovani C; Mangiavacchi S; Maccari S; Cecchi R; Ulmer JB; De Gregorio E; Geall AJ; Brazzoli M; Bertholet S
    PLoS One; 2016; 11(8):e0161193. PubMed ID: 27525409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-Directed expression of functional flock house virus RNA1 derivatives in Saccharomyces cerevisiae, heterologous gene expression, and selective effects on subgenomic mRNA synthesis.
    Price BD; Roeder M; Ahlquist P
    J Virol; 2000 Dec; 74(24):11724-33. PubMed ID: 11090172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mannosylation of LNP Results in Improved Potency for Self-Amplifying RNA (SAM) Vaccines.
    Goswami R; Chatzikleanthous D; Lou G; Giusti F; Bonci A; Taccone M; Brazzoli M; Gallorini S; Ferlenghi I; Berti F; O'Hagan DT; Pergola C; Baudner BC; Adamo R
    ACS Infect Dis; 2019 Sep; 5(9):1546-1558. PubMed ID: 31290323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity.
    McCafferty S; Haque AKMA; Vandierendonck A; Weidensee B; Plovyt M; Stuchlíková M; François N; Valembois S; Heyndrickx L; Michiels J; Ariën KK; Vandekerckhove L; Abdelnabi R; Foo CS; Neyts J; Sahu I; Sanders NN
    Mol Ther; 2022 Sep; 30(9):2968-2983. PubMed ID: 35450821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo.
    Pushko P; Parker M; Ludwig GV; Davis NL; Johnston RE; Smith JF
    Virology; 1997 Dec; 239(2):389-401. PubMed ID: 9434729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.
    Hessel A; Schwendinger M; Fritz D; Coulibaly S; Holzer GW; Sabarth N; Kistner O; Wodal W; Kerschbaum A; Savidis-Dacho H; Crowe BA; Kreil TR; Barrett PN; Falkner FG
    PLoS One; 2010 Aug; 5(8):e12217. PubMed ID: 20808939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Amplifying RNA Approach for Protein Replacement Therapy.
    Papukashvili D; Rcheulishvili N; Liu C; Ji Y; He Y; Wang PG
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced immune responses following heterologous vaccination with self-amplifying RNA and mRNA COVID-19 vaccines.
    Elliott T; Cheeseman HM; Evans AB; Day S; McFarlane LR; O'Hara J; Kalyan M; Amini F; Cole T; Winston A; Fidler S; Pollock KM; Harker JA; Shattock RJ
    PLoS Pathog; 2022 Oct; 18(10):e1010885. PubMed ID: 36194628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization.
    Pourseif MM; Masoudi-Sobhanzadeh Y; Azari E; Parvizpour S; Barar J; Ansari R; Omidi Y
    Drug Discov Today; 2022 Nov; 27(11):103341. PubMed ID: 35988718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins.
    Beissert T; Koste L; Perkovic M; Walzer KC; Erbar S; Selmi A; Diken M; Kreiter S; Türeci Ö; Sahin U
    Hum Gene Ther; 2017 Dec; 28(12):1138-1146. PubMed ID: 28877647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.