BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36694939)

  • 21. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.
    Arbabi Zaboli K; Rahimi H; Thekkiniath J; Taromchi AH; Kaboli S
    Folia Histochem Cytobiol; 2022; 60(1):13-23. PubMed ID: 35157300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9.
    Žun G; Doberšek K; Petrovič U
    Yeast; 2023 Jan; 40(1):32-41. PubMed ID: 36536407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-mediated Inactivation of arginase in a yeast strain isolated from Nuruk and its impact on the whole genome.
    Chin YW; Shin SC; Han S; Jang HW; Kim HJ
    J Biotechnol; 2021 Nov; 341():163-167. PubMed ID: 34601018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in
    Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z
    ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple-to-use CRISPR-SpCas9/SaCas9/AsCas12a vector series for genome editing in Saccharomyces cerevisiae.
    Okada S; Doi G; Nakagawa S; Kusumoto E; Ito T
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34739076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A history of genome editing in Saccharomyces cerevisiae.
    Alexander WG
    Yeast; 2018 May; 35(5):355-360. PubMed ID: 29247562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying Signalling Pathways Regulated by GPRC5B in β-Cells by CRISPR-Cas9-Mediated Genome Editing.
    Atanes P; Ruz-Maldonado I; Hawkes R; Liu B; Persaud SJ; Amisten S
    Cell Physiol Biochem; 2018; 45(2):656-666. PubMed ID: 29408822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [An efficient marker-free genome editing method for
    Shen Y; Chen Z; Chen J; Zhao B; Lü J; Gui L; Lu F; Li M
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4744-4755. PubMed ID: 36593207
    [No Abstract]   [Full Text] [Related]  

  • 39. CRISPR/Cas9 system in Plasmodium falciparum using the centromere plasmid.
    Payungwoung T; Shinzawa N; Hino A; Nishi T; Murata Y; Yuda M; Iwanaga S
    Parasitol Int; 2018 Oct; 67(5):605-608. PubMed ID: 29886342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repurposing the Endogenous CRISPR-Cas9 System for High-Efficiency Genome Editing in
    Gu S; Zhang J; Li L; Zhong J
    ACS Synth Biol; 2022 Dec; 11(12):4031-4042. PubMed ID: 36414383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.