BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36695019)

  • 21. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooperative deformation of mineral and collagen in bone at the nanoscale.
    Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106471. PubMed ID: 38458079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular origin of viscoelasticity in mineralized collagen fibrils.
    Milazzo M; David A; Jung GS; Danti S; Buehler MJ
    Biomater Sci; 2021 May; 9(9):3390-3400. PubMed ID: 33949363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments.
    Hellmich Ch; Ulm FJ
    J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D random walk model of diffusion in human Hypo- and Hyper- mineralized collagen fibrils.
    Bini F; Pica A; Marinozzi A; Marinozzi F
    J Biomech; 2021 Aug; 125():110586. PubMed ID: 34186294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography.
    Lee BEJ; Langelier B; Grandfield K
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100657. PubMed ID: 34296817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone.
    Yang PF; Nie XT; Wang Z; Al-Qudsy LHH; Ren L; Xu HY; Rittweger J; Shang P
    Front Physiol; 2019; 10():775. PubMed ID: 31293444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanics of Mineralized Collagen Fibrils upon Transient Loads.
    Milazzo M; Jung GS; Danti S; Buehler MJ
    ACS Nano; 2020 Jul; 14(7):8307-8316. PubMed ID: 32603087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchrotron diffraction study of deformation mechanisms in mineralized tendon.
    Gupta HS; Messmer P; Roschger P; Bernstorff S; Klaushofer K; Fratzl P
    Phys Rev Lett; 2004 Oct; 93(15):158101. PubMed ID: 15524943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
    Wang W; Elbanna A
    Bone; 2014 Nov; 68():20-31. PubMed ID: 25108082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competing mechanisms in fracture of staggered mineralized collagen fibril arrays.
    Xu M; An B; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105761. PubMed ID: 36905708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior.
    Kamml J; Acevedo C; Kammer DS
    J Mech Behav Biomed Mater; 2023 Dec; 148():106198. PubMed ID: 37890341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.