These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36695019)

  • 41. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone.
    Nair AK; Gautieri A; Buehler MJ
    Biomacromolecules; 2014 Jul; 15(7):2494-500. PubMed ID: 24892376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intermolecular channels direct crystal orientation in mineralized collagen.
    Xu Y; Nudelman F; Eren ED; Wirix MJM; Cantaert B; Nijhuis WH; Hermida-Merino D; Portale G; Bomans PHH; Ottmann C; Friedrich H; Bras W; Akiva A; Orgel JPRO; Meldrum FC; Sommerdijk N
    Nat Commun; 2020 Oct; 11(1):5068. PubMed ID: 33033251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of crosslinking on the mechanical properties of mineralized and non-mineralized collagen fibers.
    Bou-Akl T; Banglmaier R; Miller R; VandeVord P
    J Biomed Mater Res A; 2013 Sep; 101(9):2507-14. PubMed ID: 23359539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM.
    Quan BD; Sone ED
    Bone; 2015 Aug; 77():42-9. PubMed ID: 25892483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Constitutive description of skin dermis: Through analytical continuum and coarse-grained approaches for multi-scale understanding.
    Pissarenko A; Ruestes CJ; Meyers MA
    Acta Biomater; 2020 Apr; 106():208-224. PubMed ID: 32014584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical properties of mineralized collagen fibrils as influenced by demineralization.
    Balooch M; Habelitz S; Kinney JH; Marshall SJ; Marshall GW
    J Struct Biol; 2008 Jun; 162(3):404-10. PubMed ID: 18467127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical behavior of biomimetically mineralized collagen matrix using the polymer - induced liquid precursor process.
    Zhao L; He X; Todoh M
    J Biomech; 2020 May; 104():109738. PubMed ID: 32188573
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils.
    de Alcântara ACS; Felix LC; Galvão DS; Sollero P; Skaf MS
    ACS Biomater Sci Eng; 2023 Jan; 9(1):230-245. PubMed ID: 36484626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.
    Vercher A; Giner E; Arango C; Tarancón JE; Fuenmayor FJ
    Biomech Model Mechanobiol; 2014 Apr; 13(2):437-49. PubMed ID: 23793930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils.
    Kamml J; Ke CY; Acevedo C; Kammer DS
    J Mech Behav Biomed Mater; 2023 Jul; 143():105870. PubMed ID: 37156073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy.
    Ryou H; Tay FR; Ossa A; Arola D
    J Mech Behav Biomed Mater; 2023 Feb; 138():105624. PubMed ID: 36543081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC; Yuan F; Singhal A; Almer JD; Brinson LC; Dunand DC
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deformation micromechanisms of collagen fibrils under uniaxial tension.
    Tang Y; Ballarini R; Buehler MJ; Eppell SJ
    J R Soc Interface; 2010 May; 7(46):839-50. PubMed ID: 19897533
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiscale Characterization of Type I Collagen Fibril Stress-Strain Behavior under Tensile Load: Analytical vs. MD Approaches.
    Gouissem A; Mbarki R; Al Khatib F; Adouni M
    Bioengineering (Basel); 2022 Apr; 9(5):. PubMed ID: 35621471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.