These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36695491)
1. Ammonia Capture in Rhodium(II)-Based Metal-Organic Polyhedra via Synergistic Coordinative and H-Bonding Interactions. Carné-Sánchez A; Martínez-Esaín J; Rookard T; Flood CJ; Faraudo J; Stylianou KC; Maspoch D ACS Appl Mater Interfaces; 2023 Feb; 15(5):6747-6754. PubMed ID: 36695491 [TBL] [Abstract][Full Text] [Related]
2. Postsynthetic Covalent and Coordination Functionalization of Rhodium(II)-Based Metal-Organic Polyhedra. Carné-Sánchez A; Albalad J; Grancha T; Imaz I; Juanhuix J; Larpent P; Furukawa S; Maspoch D J Am Chem Soc; 2019 Mar; 141(9):4094-4102. PubMed ID: 30721045 [TBL] [Abstract][Full Text] [Related]
3. Removal of Ammonia Emissions via Reversible Structural Transformation in M(BDC) (M = Cu, Zn, Cd) Metal-Organic Frameworks. Chen Y; Du Y; Liu P; Yang J; Li L; Li J Environ Sci Technol; 2020 Mar; 54(6):3636-3642. PubMed ID: 32068395 [TBL] [Abstract][Full Text] [Related]
4. Porous Colloidal Hydrogels Formed by Coordination-Driven Self-Assembly of Charged Metal-Organic Polyhedra. Wang Z; Craig GA; Legrand A; Haase F; Minami S; Urayama K; Furukawa S Chem Asian J; 2021 May; 16(9):1092-1100. PubMed ID: 33660942 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Polycarboxylate Rhodium(II) Metal-Organic Polyhedra (MOPs) and their use as Building Blocks for Highly Connected Metal-Organic Frameworks (MOFs). Grancha T; Carné-Sánchez A; Zarekarizi F; Hernández-López L; Albalad J; Khobotov A; Guillerm V; Morsali A; Juanhuix J; Gándara F; Imaz I; Maspoch D Angew Chem Int Ed Engl; 2021 Mar; 60(11):5729-5733. PubMed ID: 33306243 [TBL] [Abstract][Full Text] [Related]
6. Recyclable Homogeneous Catalysis Enabled by Dynamic Coordination on Rhodium(II) Axial Sites of Metal-Organic Polyhedra. Sánchez-Fuente M; Hernández-López L; Maspoch D; Mas-Ballesté R; Carné-Sánchez A Chemistry; 2024 Aug; 30(43):e202401661. PubMed ID: 38780226 [TBL] [Abstract][Full Text] [Related]
7. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Barin G; Peterson GW; Crocellà V; Xu J; Colwell KA; Nandy A; Reimer JA; Bordiga S; Long JR Chem Sci; 2017 Jun; 8(6):4399-4409. PubMed ID: 30155218 [TBL] [Abstract][Full Text] [Related]
9. Transformation of Type III to Type II Porous Liquids by Tuning Surface Rigidity of Rhodium(II)-Based Metal-Organic Polyhedra for CO Dinker MK; Li MM; Zhao K; Zuo M; Ding L; Liu XQ; Sun LB Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306495. PubMed ID: 37277694 [TBL] [Abstract][Full Text] [Related]
10. Chromium(II) Metal-Organic Polyhedra as Highly Porous Materials. Park J; Perry Z; Chen YP; Bae J; Zhou HC ACS Appl Mater Interfaces; 2017 Aug; 9(33):28064-28068. PubMed ID: 28741931 [TBL] [Abstract][Full Text] [Related]
11. A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal-Organic Polyhedra. Carné-Sánchez A; Craig GA; Larpent P; Guillerm V; Urayama K; Maspoch D; Furukawa S Angew Chem Int Ed Engl; 2019 May; 58(19):6347-6350. PubMed ID: 30848051 [TBL] [Abstract][Full Text] [Related]
13. Anchoring LiCl in the Nanopores of Metal-Organic Frameworks for Ultra-High Uptake and Selective Separation of Ammonia. Shi Y; Wang Z; Li Z; Wang H; Xiong D; Qiu J; Tian X; Feng G; Wang J Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212032. PubMed ID: 36180385 [TBL] [Abstract][Full Text] [Related]
14. Protection strategies for directionally-controlled synthesis of previously inaccessible metal-organic polyhedra (MOPs): the cases of carboxylate- and amino-functionalised Rh(ii)-MOPs. Albalad J; Carné-Sánchez A; Grancha T; Hernández-López L; Maspoch D Chem Commun (Camb); 2019 Nov; 55(85):12785-12788. PubMed ID: 31591620 [TBL] [Abstract][Full Text] [Related]
15. High Ammonia Uptake of a Metal-Organic Framework Adsorbent in a Wide Pressure Range. Kim DW; Kang DW; Kang M; Lee JH; Choe JH; Chae YS; Choi DS; Yun H; Hong CS Angew Chem Int Ed Engl; 2020 Dec; 59(50):22531-22536. PubMed ID: 32969148 [TBL] [Abstract][Full Text] [Related]
16. Influence of the Surface Chemistry of Metal-Organic Polyhedra in Their Assembly into Ultrathin Films for Gas Separation. Tejedor I; Andrés MA; Carné-Sánchez A; Arjona M; Pérez-Miana M; Sánchez-Laínez J; Coronas J; Fontaine P; Goldmann M; Roubeau O; Maspoch D; Gascón I ACS Appl Mater Interfaces; 2022 Jun; 14(23):27495-506. PubMed ID: 35657142 [TBL] [Abstract][Full Text] [Related]
17. Steric Hindrance in Metal Coordination Drives the Separation of Pyridine Regioisomers Using Rhodium(II)-Based Metal-Organic Polyhedra. Hernández-López L; Martínez-Esaín J; Carné-Sánchez A; Grancha T; Faraudo J; Maspoch D Angew Chem Int Ed Engl; 2021 May; 60(20):11406-11413. PubMed ID: 33620767 [TBL] [Abstract][Full Text] [Related]
18. Control of Extrinsic Porosities in Linked Metal-Organic Polyhedra Gels by Imparting Coordination-Driven Self-Assembly with Electrostatic Repulsion. Wang Z; Aoyama T; Sánchez-González E; Inose T; Urayama K; Furukawa S ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35544704 [TBL] [Abstract][Full Text] [Related]
19. Tailoring Multiple Sites of Metal-Organic Frameworks for Highly Efficient and Reversible Ammonia Adsorption. Wang Z; Li Z; Zhang XG; Xia Q; Wang H; Wang C; Wang Y; He H; Zhao Y; Wang J ACS Appl Mater Interfaces; 2021 Dec; 13(47):56025-56034. PubMed ID: 34788531 [TBL] [Abstract][Full Text] [Related]
20. A Recyclable Metal-Organic Framework as a Dual Detector and Adsorbent for Ammonia. Gładysiak A; Nguyen TN; Navarro JAR; Rosseinsky MJ; Stylianou KC Chemistry; 2017 Oct; 23(55):13602-13606. PubMed ID: 28786536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]