BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36695575)

  • 1. In Search of a Mechanistic Link between Chlamydia trachomatis-Induced Cellular Pathophysiology and Oncogenesis.
    Steiert B; Faris R; Weber MM
    Infect Immun; 2023 Feb; 91(2):e0044322. PubMed ID: 36695575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Steiert B; Icardi CM; Faris R; McCaslin PN; Smith P; Klingelhutz AJ; Yau PM; Weber MM
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2303487120. PubMed ID: 37155906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole.
    Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ
    Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis infection causes mitotic spindle pole defects independently from its effects on centrosome amplification.
    Knowlton AE; Brown HM; Richards TS; Andreolas LA; Patel RK; Grieshaber SS
    Traffic; 2011 Jul; 12(7):854-66. PubMed ID: 21477082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrosome abnormalities during a Chlamydia trachomatis infection are caused by dysregulation of the normal duplication pathway.
    Johnson KA; Tan M; Sütterlin C
    Cell Microbiol; 2009 Jul; 11(7):1064-73. PubMed ID: 19290915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia and HPV induce centrosome amplification in the host cell through additive mechanisms.
    Wang K; Muñoz KJ; Tan M; Sütterlin C
    Cell Microbiol; 2021 Dec; 23(12):e13397. PubMed ID: 34716742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion.
    Haines A; Wesolowski J; Paumet F
    Microbiol Spectr; 2023 Feb; 11(1):e0261422. PubMed ID: 36651786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during
    Ghosh S; Ruelke EA; Ferrell JC; Bodero MD; Fields KA; Jewett TJ
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32152196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities.
    Grieshaber SS; Grieshaber NA; Miller N; Hackstadt T
    Traffic; 2006 Aug; 7(8):940-9. PubMed ID: 16882039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Meier K; Jachmann LH; Türköz G; Babu Sait MR; Pérez L; Kepp O; Valdivia RH; Kroemer G; Sixt BS
    mBio; 2023 Aug; 14(4):e0319022. PubMed ID: 37530528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle.
    Cortina ME; Derré I
    mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging.
    Romano JD; de Beaumont C; Carrasco JA; Ehrenman K; Bavoil PM; Coppens I
    Cell Microbiol; 2013 Apr; 15(4):619-46. PubMed ID: 23107293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Preliminary Characterization of Novel Type III Secreted Effector Proteins in Chlamydia trachomatis.
    McCaslin PN; Andersen SE; Icardi CM; Faris R; Steiert B; Smith P; Haider J; Weber MM
    Infect Immun; 2023 Jul; 91(7):e0049122. PubMed ID: 37347192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.
    Romano JD; de Beaumont C; Carrasco JA; Ehrenman K; Bavoil PM; Coppens I
    Eukaryot Cell; 2013 Feb; 12(2):265-77. PubMed ID: 23243063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion.
    Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468693
    [No Abstract]   [Full Text] [Related]  

  • 17. The
    Bishop RC; Derré I
    Infect Immun; 2022 Jun; 90(6):e0019022. PubMed ID: 35587198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223.
    Alzhanov DT; Weeks SK; Burnett JR; Rockey DD
    BMC Microbiol; 2009 Jan; 9():2. PubMed ID: 19123944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multinucleation during C. trachomatis infections is caused by the contribution of two effector pathways.
    Brown HM; Knowlton AE; Snavely E; Nguyen BD; Richards TS; Grieshaber SS
    PLoS One; 2014; 9(6):e100763. PubMed ID: 24955832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.