These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36695934)
1. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment. Zhao H; Wang K; Wang H J Math Biol; 2023 Jan; 86(3):32. PubMed ID: 36695934 [TBL] [Abstract][Full Text] [Related]
2. A climate-based malaria model with the use of bed nets. Wang X; Zhao XQ J Math Biol; 2018 Jul; 77(1):1-25. PubMed ID: 28965238 [TBL] [Abstract][Full Text] [Related]
3. Threshold dynamics of an almost periodic vector-borne disease model. Zhang T; Zhao XQ J Math Biol; 2023 Oct; 87(5):72. PubMed ID: 37848568 [TBL] [Abstract][Full Text] [Related]
4. Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. Shi Y; Zhao H J Math Biol; 2021 Mar; 82(4):24. PubMed ID: 33649976 [TBL] [Abstract][Full Text] [Related]
5. The Threshold Infection Level for [Formula: see text] Invasion in a Two-Sex Mosquito Population Model. Li D; Wan H Bull Math Biol; 2019 Jul; 81(7):2596-2624. PubMed ID: 31161558 [TBL] [Abstract][Full Text] [Related]
6. Vector-borne disease models with Lagrangian approach. Gao D; Cao L J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559 [TBL] [Abstract][Full Text] [Related]
7. A reaction-diffusion within-host HIV model with cell-to-cell transmission. Ren X; Tian Y; Liu L; Liu X J Math Biol; 2018 Jun; 76(7):1831-1872. PubMed ID: 29305736 [TBL] [Abstract][Full Text] [Related]
8. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes. Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647 [TBL] [Abstract][Full Text] [Related]
9. Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. Lin Z; Zhu H J Math Biol; 2017 Dec; 75(6-7):1381-1409. PubMed ID: 28378145 [TBL] [Abstract][Full Text] [Related]
10. A Malaria Transmission Model with Temperature-Dependent Incubation Period. Wang X; Zhao XQ Bull Math Biol; 2017 May; 79(5):1155-1182. PubMed ID: 28389985 [TBL] [Abstract][Full Text] [Related]
11. A reaction-advection-diffusion model of cholera epidemics with seasonality and human behavior change. Wang X; Wu R; Zhao XQ J Math Biol; 2022 Apr; 84(5):34. PubMed ID: 35381862 [TBL] [Abstract][Full Text] [Related]
12. Global stability properties of a class of renewal epidemic models. Meehan MT; Cocks DG; Müller J; McBryde ES J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545 [TBL] [Abstract][Full Text] [Related]
13. The basic reproduction number [Formula: see text] in time-heterogeneous environments. Inaba H J Math Biol; 2019 Jul; 79(2):731-764. PubMed ID: 31087145 [TBL] [Abstract][Full Text] [Related]
14. A reaction-diffusion malaria model with seasonality and incubation period. Bai Z; Peng R; Zhao XQ J Math Biol; 2018 Jul; 77(1):201-228. PubMed ID: 29188365 [TBL] [Abstract][Full Text] [Related]
15. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis. Bichara D; Iggidr A; Smith L Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599 [TBL] [Abstract][Full Text] [Related]
16. Global dynamics of a tuberculosis model with age-dependent latency and time delays in treatment. Guo ZK; Huo HF; Xiang H; Ren QY J Math Biol; 2023 Oct; 87(5):66. PubMed ID: 37798450 [TBL] [Abstract][Full Text] [Related]
17. A hybrid Lagrangian-Eulerian model for vector-borne diseases. Gao D; Yuan X J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206 [TBL] [Abstract][Full Text] [Related]
18. Global stability for epidemic models on multiplex networks. Huang YJ; Juang J; Liang YH; Wang HY J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277 [TBL] [Abstract][Full Text] [Related]
19. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks. Zhao R; Liu Q; Zhang H Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376 [TBL] [Abstract][Full Text] [Related]
20. Basic reproduction ratios for periodic and time-delayed compartmental models with impulses. Bai Z; Zhao XQ J Math Biol; 2020 Mar; 80(4):1095-1117. PubMed ID: 31768629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]