These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36696632)

  • 1. Cysteine-Induced pH-Dependent Formation of Thiols and Sulfides or 2-Acetylthiazole and Pyrazines during Thermal Treatment of
    Zhou T; Xia X; Cui H; Zhai Y; Zhang F; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Feb; 71(5):2472-2481. PubMed ID: 36696632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive Formation of 2,3-Butanedione and Pyrazines through Intervention of Added Cysteine during Thermal Processing of Alanine-Xylose Amadori Compounds.
    Zhou T; Xia X; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Dec; 70(48):15202-15212. PubMed ID: 36444759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation Priority of Pyrazines and 2-Acetylthiazole Dependent on the Added Cysteine and Fragments of Deoxyosones during the Thermal Process of the Glycine-Ribose Amadori Compound.
    Liu M; Yu J; Zhou T; Xu H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Sep; 70(37):11643-11651. PubMed ID: 36070497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of
    Yu J; Cui H; Tang W; Hayat K; Hussain S; Tahir MU; Gao Y; Zhang X; Ho CT
    J Agric Food Chem; 2020 Feb; 68(6):1714-1724. PubMed ID: 31957424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of N-(1-Deoxy-Α-D-Xylulos-1-Yl)-Glutamic Acid via Aqueous Maillard Reaction Coupled with Vacuum Dehydration and Its Flavor Formation Through Thermal Treatment of Baking Process.
    Xu M; Cui H; Sun F; Jia C; Zhang SL; Hussain S; Tahir MU; Zhang X; Hayat K
    J Food Sci; 2019 Aug; 84(8):2171-2180. PubMed ID: 31313307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promotion or Inhibition Effects of Exogenous Glutathione-Degraded Amino Acids on the Formation of 2,3-Butanedione and Pyrazines via Varied Pathways of Interaction with α-Dicarbonyl Compounds Derived from
    Zhou T; Xia X; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Oct; 71(39):14312-14321. PubMed ID: 37737140
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Tang W; Cui H; Sun F; Yu X; Hayat K; Hussain S; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Aug; 67(32):8994-9001. PubMed ID: 31347366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoted Formation of Pyrazines and Sulfur-Containing Volatile Compounds through Interaction of Extra-Added Glutathione or Its Constituent Amino Acids and Secondary Products of Thermally Degraded
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Jul; 70(29):9095-9105. PubMed ID: 35838405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation between 2-Threityl-thiazolidine-4-carboxylic Acid and Xylose-Cysteine Amadori Rearrangement Product Regulated by pH Adjustment during High-Temperature Instantaneous Dehydration.
    Zhai Y; Cui H; Hayat K; Hussain S; Tahir MU; Deng S; Zhang Q; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10884-10892. PubMed ID: 32902964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous Threonine-Induced Conversion of Threonine-Xylose Amadori Compound to Heyns Compound for Efficiently Promoting the Formation of Pyrazines.
    Chen P; Cui H; Zhou T; Feng L; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Jul; 71(29):11141-11149. PubMed ID: 37440603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Formation of Pyrazines: Inhibition by Ellagic Acid Interaction with
    Wang Z; Cui H; Ma M; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Feb; 70(5):1618-1628. PubMed ID: 35089027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.
    Hou L; Xie J; Zhao J; Zhao M; Fan M; Xiao Q; Liang J; Chen F
    Food Chem; 2017 Oct; 232():135-144. PubMed ID: 28490056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Mechanism of (-)-Epigallocatechin Gallate Indicating the Critical Formation Conditions of Amadori Compound during an Aqueous Maillard Reaction.
    Yu X; Cui H; Hayat K; Hussain S; Jia C; Zhang SL; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Mar; 67(12):3412-3422. PubMed ID: 30827106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Molecular Mechanisms of Transformation between Isomeric Intermediates Formed at Different Stages of Cysteine-Xylose Maillard Reaction Model through Dehydration.
    Zhai Y; Hayat K; Li T; Fu Y; Ho CT
    J Agric Food Chem; 2023 Nov; 71(43):16260-16269. PubMed ID: 37857511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous Alanine Promoting the Reaction between Amadori Compound and Deoxyxylosone and Inhibiting the Formation of 2-Furfural during Thermal Treatment.
    Zhou T; Huang M; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2024 Mar; 72(11):5878-5886. PubMed ID: 38462902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of pyrazines formation in methionine/glucose and corresponding Amadori rearrangement product model.
    Deng S; Cui H; Hayat K; Zhai Y; Zhang Q; Zhang X; Ho CT
    Food Chem; 2022 Jul; 382():132500. PubMed ID: 35245757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction.
    Cui H; Duhoranimana E; Karangwa E; Jia C; Zhang X
    Food Chem; 2018 Apr; 246():442-447. PubMed ID: 29291871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.
    Ong OXH; Seow YX; Ong PKC; Zhou W
    Ultrason Sonochem; 2015 Sep; 26():399-407. PubMed ID: 25640682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose.
    Cerny C; Guntz-Dubini R
    Food Chem; 2013 Nov; 141(2):1078-86. PubMed ID: 23790889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.