These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36696695)

  • 1. Robust reconstruction of fluorescence molecular tomography based on adaptive adversarial learning strategy.
    Zhang P; Song F; Ma C; Liu Z; Wu H; Sun Y; Feng Y; He Y; Zhang G
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36696695
    [No Abstract]   [Full Text] [Related]  

  • 2. D2-RecST: Dual-domain joint reconstruction strategy for fluorescence molecular tomography based on image domain and perception domain.
    Zhang P; Ma C; Song F; Zhang T; Sun Y; Feng Y; He Y; Liu F; Wang D; Zhang G
    Comput Methods Programs Biomed; 2023 Feb; 229():107293. PubMed ID: 36481532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust transformed l
    Yuan Y; Yi H; Kang D; Yu J; Guo H; He X; He X
    Comput Methods Programs Biomed; 2023 Jun; 234():107503. PubMed ID: 37015182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of advances in imaging methodology in fluorescence molecular tomography.
    Zhang P; Ma C; Song F; Fan G; Sun Y; Feng Y; Ma X; Liu F; Zhang G
    Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35276686
    [No Abstract]   [Full Text] [Related]  

  • 5. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks.
    Chen X; Meng Y; Wang L; Zhou W; Chen D; Xie H; Ren S
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38394682
    [No Abstract]   [Full Text] [Related]  

  • 6. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module.
    Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW
    J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-branch attention prior based parameterized generative adversarial network for fast and accurate limited-projection reconstruction in fluorescence molecular tomography.
    Zhang P; Ma C; Song F; Liu Z; Feng Y; Sun Y; He Y; Liu F; Wang D; Zhang G
    Biomed Opt Express; 2022 Oct; 13(10):5327-5343. PubMed ID: 36425627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive parameter selection strategy based on maximizing the probability of data for robust fluorescence molecular tomography reconstruction.
    Li J; Zhang L; Liu J; Zhang D; Kang D; Wang B; He X; Zhang H; Zhao Y; Guo H; Hou Y
    J Biophotonics; 2023 Aug; 16(8):e202300031. PubMed ID: 37074336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction method for fluorescence molecular tomography based on L1-norm primal accelerated proximal gradient.
    Liu Y; Jiang S; Liu J; An Y; Zhang G; Gao Y; Wang K; Tian J
    J Biomed Opt; 2018 Aug; 23(8):1-11. PubMed ID: 30109802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TextureWGAN: texture preserving WGAN with multitask regularizer for computed tomography inverse problems.
    Ikuta M; Zhang J
    J Med Imaging (Bellingham); 2023 Mar; 10(2):024003. PubMed ID: 36895762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography.
    Feng J; Qin C; Jia K; Han D; Liu K; Zhu S; Yang X; Tian J
    Med Phys; 2011 Nov; 38(11):5933-44. PubMed ID: 22047358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.
    Shi J; Zhang B; Liu F; Luo J; Bai J
    Opt Lett; 2013 Sep; 38(18):3696-9. PubMed ID: 24104850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method.
    Baikejiang R; Zhao Y; Fite BZ; Ferrara KW; Li C
    J Biomed Opt; 2017 May; 22(5):55001. PubMed ID: 28464120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighbor-based adaptive sparsity orthogonal least square for fluorescence molecular tomography.
    Yi H; Ma S; Yang R; Zhong S; Guo H; He X; He X; Hou Y
    J Biomed Opt; 2023 Jun; 28(6):066005. PubMed ID: 37396685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.