These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36696760)

  • 1. Carbon capture technology exploitation for vanadium tailings and assessment of CO
    Huang J; Fan Y; Liu T; Zhang Y; Hu P
    J Environ Manage; 2023 Apr; 331():117338. PubMed ID: 36696760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO
    Ho HJ; Iizuka A; Shibata E
    J Environ Manage; 2021 Jun; 288():112411. PubMed ID: 33823441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.
    Ben Ghacham A; Cecchi E; Pasquier LC; Blais JF; Mercier G
    J Environ Manage; 2015 Nov; 163():70-7. PubMed ID: 26292776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide sequestration of iron ore mining waste under low-reaction condition of a direct mineral carbonation process.
    Kusin FM; Hasan SNMS; Molahid VLM; Yusuff FM; Jusop S
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22188-22210. PubMed ID: 36282383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous mineral carbonation of ultramafic material: a pre-requisite to integrate into mineral extraction and tailings management operation.
    Puthiya Veetil SK; Hitch M
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29096-29109. PubMed ID: 33550555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonation, Cementation, and Stabilization of Ultramafic Mine Tailings.
    Power IM; Paulo C; Long H; Lockhart JA; Stubbs AR; French D; Caldwell R
    Environ Sci Technol; 2021 Jul; 55(14):10056-10066. PubMed ID: 34236189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineral carbonation process of carbon dioxide using animal bone.
    Mpofu B; Mukaya HE; Nkazi DB
    Sci Prog; 2021; 104(2):368504211019644. PubMed ID: 34092142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on ex situ mineral carbonation.
    Yadav S; Mehra A
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12202-12231. PubMed ID: 33405167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.
    Su TH; Yang HJ; Shau YH; Takazawa E; Lee YC
    J Environ Sci (China); 2016 Mar; 41():99-111. PubMed ID: 26969055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S; Jiang J; Chen X; Yan F; Li K
    ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineral CO2 sequestration by steel slag carbonation.
    Huijgen WJ; Witkamp GJ; Comans RN
    Environ Sci Technol; 2005 Dec; 39(24):9676-82. PubMed ID: 16475351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.
    Rushendra Revathy TD; Palanivelu K; Ramachandran A
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7349-59. PubMed ID: 26681331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground improvement and its role in carbon dioxide reduction: a review.
    Mohammed MA; Mohd Yunus NZ; Hezmi MA; Abang Hasbollah DZ; A Rashid AS
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):8968-8988. PubMed ID: 33443736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.
    Veetil SP; Pasquier LC; Blais JF; Cecchi E; Kentish S; Mercier G
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13486-95. PubMed ID: 25940479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The utilization of alkaline wastes in passive carbon capture and sequestration: Promises, challenges and environmental aspects.
    Khudhur FWK; MacDonald JM; Macente A; Daly L
    Sci Total Environ; 2022 Jun; 823():153553. PubMed ID: 35104509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated carbonation of brucite in mine tailings for carbon sequestration.
    Harrison AL; Power IM; Dipple GM
    Environ Sci Technol; 2013 Jan; 47(1):126-34. PubMed ID: 22770473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO
    Chen Q; Zhu L; Wang Y; Chen J; Qi C
    Sci Total Environ; 2022 Dec; 852():158516. PubMed ID: 36063952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust.
    El-Naas MH; El Gamal M; Hameedi S; Mohamed AM
    J Environ Manage; 2015 Jun; 156():218-24. PubMed ID: 25846002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of steelmaking slag for carbon capture and storage with flue gas.
    RushendraRevathy TD; Ramachandran A; Palanivelu K
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51065-51082. PubMed ID: 34786621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects.
    Polettini A; Pomi R; Stramazzo A
    J Environ Manage; 2016 Feb; 167():185-95. PubMed ID: 26686071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.