These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3669681)

  • 1. The theory of sliding filament models for muscle contraction. I. The two-state model.
    Smith DA; Sicilia S
    J Theor Biol; 1987 Jul; 127(1):1-30. PubMed ID: 3669681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The theory of sliding filament models for muscle contraction. III. Dynamics of the five-state model.
    Smith DA
    J Theor Biol; 1990 Oct; 146(4):433-66. PubMed ID: 2273895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.
    Fusi L; Percario V; Brunello E; Caremani M; Bianco P; Powers JD; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2017 Feb; 595(4):1127-1142. PubMed ID: 27763660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some self-consistent two-state sliding filament models of muscle contraction.
    Hill TL; Eisenberg E; Chen YD; Podolsky RJ
    Biophys J; 1975 Apr; 15(4):335-72. PubMed ID: 1125390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation-relaxation processes.
    Kushmerick MJ; Larson RE; Davies RE
    Proc R Soc Lond B Biol Sci; 1969 Dec; 174(1036):293-313. PubMed ID: 4391322
    [No Abstract]   [Full Text] [Related]  

  • 7. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.
    Higuchi H; Goldman YE
    Biophys J; 1995 Oct; 69(4):1491-507. PubMed ID: 8534820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I.
    Hill TL
    Prog Biophys Mol Biol; 1974; 28():267-340. PubMed ID: 4617248
    [No Abstract]   [Full Text] [Related]  

  • 10. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical properties and heat production of chicken latissimus dorsi muscles during tetanic contractions.
    Canfield SP
    J Physiol; 1971 Dec; 219(2):281-302. PubMed ID: 5158384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phenomenological theory of muscular contraction. I. Rate equations at a given length based on irreversible thermodynamics.
    Bornhorst WJ; Minardi JE
    Biophys J; 1970 Feb; 10(2):137-54. PubMed ID: 5461140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.
    Rode C; Siebert T; Tomalka A; Blickhan R
    Proc Biol Sci; 2016 Mar; 283(1826):20153030. PubMed ID: 26936248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch.
    CARLSEN F; KNAPPEIS GG; BUCHTHAL F
    J Biophys Biochem Cytol; 1961 Oct; 11(1):95-117. PubMed ID: 13876626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phenomenological theory of muscular contraction. II. Generalized length variations.
    Bornhorst WJ; Minardi JE
    Biophys J; 1970 Feb; 10(2):155-71. PubMed ID: 5414535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimate of rate constants of muscle crossbridge turnover based on dynamic mechanical measurements.
    Barden JA
    Physiol Chem Phys; 1981; 13(3):211-9. PubMed ID: 7301942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The variation in shortening heat with sarcomere length in frog muscle.
    Homsher E; Irving M; Lebacq J
    J Physiol; 1983 Dec; 345():107-21. PubMed ID: 6607340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theory of contraction and a mathematical model of striated muscle.
    Hatze H
    J Theor Biol; 1973 Aug; 40(2):219-46. PubMed ID: 4747239
    [No Abstract]   [Full Text] [Related]  

  • 20. The heat of shortening during repeated tetanic contractions of muscle treated with 1-fluoro-2,4-dinitrobenzene.
    Lebacq J
    J Physiol; 1972 Jul; 224(1):141-8. PubMed ID: 4537718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.