BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36696900)

  • 1. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater.
    Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU
    Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chromosome-level genome assembly for the amphibious plant Rorippa aquatica reveals its allotetraploid origin and mechanisms of heterophylly upon submergence.
    Sakamoto T; Ikematsu S; Nakayama H; Mandáková T; Gohari G; Sakamoto T; Li G; Hou H; Matsunaga S; Lysak MA; Kimura S
    Commun Biol; 2024 Apr; 7(1):431. PubMed ID: 38637665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf Cell Morphology Alternation in Response to Environmental Signals in
    Sakamoto T; Ikematsu S; Namie K; Hou H; Li G; Kimura S
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaves may function as temperature sensors in the heterophylly of Rorippa aquatica (Brassicaceae).
    Nakayama H; Kimura S
    Plant Signal Behav; 2015; 10(12):e1091909. PubMed ID: 26367499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root transcript profiling of two Rorippa species reveals gene clusters associated with extreme submergence tolerance.
    Sasidharan R; Mustroph A; Boonman A; Akman M; Ammerlaan AM; Breit T; Schranz ME; Voesenek LA; van Tienderen PH
    Plant Physiol; 2013 Nov; 163(3):1277-92. PubMed ID: 24077074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Basis for Natural Vegetative Propagation via Regeneration in North American Lake Cress, Rorippa aquatica (Brassicaceae).
    Amano R; Nakayama H; Momoi R; Omata E; Gunji S; Takebayashi Y; Kojima M; Ikematsu S; Ikeuchi M; Iwase A; Sakamoto T; Kasahara H; Sakakibara H; Ferjani A; Kimura S
    Plant Cell Physiol; 2020 Feb; 61(2):353-369. PubMed ID: 31651939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L.
    Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H
    Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus.
    Kim J; Joo Y; Kyung J; Jeon M; Park JY; Lee HG; Chung DS; Lee E; Lee I
    PLoS Genet; 2018 Feb; 14(2):e1007208. PubMed ID: 29447166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress.
    Nakayama H; Nakayama N; Seiki S; Kojima M; Sakakibara H; Sinha N; Kimura S
    Plant Cell; 2014 Dec; 26(12):4733-48. PubMed ID: 25516600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme flooding tolerance in Rorippa.
    Akman M; Bhikharie A; Mustroph A; Sasidharan R
    Plant Signal Behav; 2014; 9(2):e27847. PubMed ID: 24525961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Lee JH; Jung JH; Park CM
    Plant Cell; 2017 Nov; 29(11):2817-2830. PubMed ID: 29070509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments.
    Koga H; Ikematsu S; Kimura S
    Annu Rev Plant Biol; 2024 Feb; ():. PubMed ID: 38424069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterophylly: Phenotypic Plasticity of Leaf Shape in Aquatic and Amphibious Plants.
    Li G; Hu S; Hou H; Kimura S
    Plants (Basel); 2019 Oct; 8(10):. PubMed ID: 31623228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and Biochemical Differences in Leaf Explants and the Implication for Regeneration Ability in
    Amano R; Momoi R; Omata E; Nakahara T; Kaminoyama K; Kojima M; Takebayashi Y; Ikematsu S; Okegawa Y; Sakamoto T; Kasahara H; Sakakibara H; Motohashi K; Kimura S
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33076473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Klermund C; Ranftl QL; Diener J; Bastakis E; Richter R; Schwechheimer C
    Plant Cell; 2016 Mar; 28(3):646-60. PubMed ID: 26917680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism.
    Zhu M; Geng S; Chakravorty D; Guan Q; Chen S; Assmann SM
    Plant J; 2020 Mar; 101(6):1331-1348. PubMed ID: 31677315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diversity of stomatal development regulation in
    Doll Y; Koga H; Tsukaya H
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and physiological response of amphibious Rotala rotundifolia from emergent to submerged form.
    Zhao W; Xiao J; Lin G; Peng Q; Chu S
    J Plant Res; 2024 Mar; 137(2):279-291. PubMed ID: 38270713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.