These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nonpulsatile cardiopulmonary bypass disrupts the flow-metabolism couple in the brain. Andersen K; Waaben J; Husum B; Voldby B; Bødker A; Hansen AJ; Gjedde A J Thorac Cardiovasc Surg; 1985 Oct; 90(4):570-9. PubMed ID: 4046623 [TBL] [Abstract][Full Text] [Related]
3. Arterial line filtration protects brain microcirculation during cardiopulmonary bypass in the pig. Waaben J; Sørensen HR; Andersen UL; Gefke K; Lund J; Aggestrup S; Husum B; Laursen H; Gjedde A J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1030-5. PubMed ID: 8159023 [TBL] [Abstract][Full Text] [Related]
4. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass. Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262 [TBL] [Abstract][Full Text] [Related]
5. Pharmacologic EEG suppression during cardiopulmonary bypass: cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and normothermia. Woodcock TE; Murkin JM; Farrar JK; Tweed WA; Guiraudon GM; McKenzie FN Anesthesiology; 1987 Aug; 67(2):218-24. PubMed ID: 3605748 [TBL] [Abstract][Full Text] [Related]
6. Optimal perfusion flow rate for the brain during deep hypothermic cardiopulmonary bypass at 20 degrees C. An experimental study. Miyamoto K; Kawashima Y; Matsuda H; Okuda A; Maeda S; Hirose H J Thorac Cardiovasc Surg; 1986 Dec; 92(6):1065-70. PubMed ID: 3784587 [TBL] [Abstract][Full Text] [Related]
7. Body temperature influences regional tissue blood flow during retrograde cerebral perfusion. Usui A; Oohara K; Murakami F; Ooshima H; Kawamura M; Murase M J Thorac Cardiovasc Surg; 1997 Sep; 114(3):440-7. PubMed ID: 9305198 [TBL] [Abstract][Full Text] [Related]
8. The effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass. Brusino FG; Reves JG; Smith LR; Prough DS; Stump DA; McIntyre RW J Thorac Cardiovasc Surg; 1989 Apr; 97(4):541-7. PubMed ID: 2927159 [TBL] [Abstract][Full Text] [Related]
9. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children. Kern FH; Ungerleider RM; Quill TJ; Baldwin B; White WD; Reves JG; Greeley WJ J Thorac Cardiovasc Surg; 1991 Apr; 101(4):618-22. PubMed ID: 2008099 [TBL] [Abstract][Full Text] [Related]
10. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Duebener LF; Hagino I; Sakamoto T; Mime LB; Stamm C; Zurakowski D; Schäfers HJ; Jonas RA Circulation; 2002 Sep; 106(12 Suppl 1):I103-8. PubMed ID: 12354717 [TBL] [Abstract][Full Text] [Related]
11. Beta-adrenergic regulation of the cerebral microcirculation after hypothermic cardiopulmonary bypass. Sellke FW; Tofukuji M; Stamler A; Li J; Wang SY Circulation; 1997 Nov; 96(9 Suppl):II-304-10. PubMed ID: 9386115 [TBL] [Abstract][Full Text] [Related]
12. Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest. Amir G; Ramamoorthy C; Riemer RK; Davis CR; Hanley FL; Reddy VM J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1307-13. PubMed ID: 17140947 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG; Lim C; Moon HJ; Kim YJ Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [TBL] [Abstract][Full Text] [Related]
14. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. An experimental study. Fox LS; Blackstone EH; Kirklin JW; Bishop SP; Bergdahl LA; Bradley EL J Thorac Cardiovasc Surg; 1984 May; 87(5):658-64. PubMed ID: 6717045 [TBL] [Abstract][Full Text] [Related]
15. Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglets. Sakamoto T; Nollert GD; Zurakowski D; Soul J; Duebener LF; Sperling J; Nagashima M; Taylor G; DuPlessis AJ; Jonas RA Ann Thorac Surg; 2004 May; 77(5):1656-63; discussion 1663. PubMed ID: 15111160 [TBL] [Abstract][Full Text] [Related]
16. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Cook DJ; Oliver WC; Orszulak TA; Daly RC; Bryce RD Ann Thorac Surg; 1995 Dec; 60(6):1671-7. PubMed ID: 8787461 [TBL] [Abstract][Full Text] [Related]
17. A paradox of cerebral hyperperfusion in the face of cerebral hypotension: the effect of perfusion pressure on cerebral blood flow and metabolism during normothermic cardiopulmonary bypass. Philpott JM; Eskew TD; Sun YS; Dennis KJ; Foreman BH; Fairbrother SN; Brown PM; Koutlas TC; Chitwood WR; Lust RM J Surg Res; 1998 Jul; 77(2):141-9. PubMed ID: 9733601 [TBL] [Abstract][Full Text] [Related]
18. Effect of perfusion pressure on cerebral blood flow during normothermic cardiopulmonary bypass. Newman MF; Croughwell ND; White WD; Lowry E; Baldwin BI; Clements FM; Davis RD; Jones RH; Amory DW; Reves JG Circulation; 1996 Nov; 94(9 Suppl):II353-7. PubMed ID: 8901774 [TBL] [Abstract][Full Text] [Related]
19. Cerebral blood flow during cardiac operations: comparison of Kety-Schmidt and xenon-133 clearance methods. Cook DJ; Anderson RE; Michenfelder JD; Oliver WC; Orszulak TA; Daly RC; Bryce RD Ann Thorac Surg; 1995 Mar; 59(3):614-20. PubMed ID: 7887699 [TBL] [Abstract][Full Text] [Related]