BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 36697211)

  • 1. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD.
    Calderon AA; Dimond C; Choy DF; Pappu R; Grimbaldeston MA; Mohan D; Chung KF
    Eur Respir Rev; 2023 Mar; 32(167):. PubMed ID: 36697211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epithelial alarmins: a new target to treat chronic respiratory diseases.
    Nedeva D; Kowal K; Mihaicuta S; Guidos Fogelbach G; Steiropoulos P; Jose Chong-Neto H; Tiotiu A
    Expert Rev Respir Med; 2023; 17(9):773-786. PubMed ID: 37746733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sounding the alarmins-The role of alarmin cytokines in asthma.
    Gauvreau GM; Bergeron C; Boulet LP; Cockcroft DW; Côté A; Davis BE; Leigh R; Myers I; O'Byrne PM; Sehmi R
    Allergy; 2023 Feb; 78(2):402-417. PubMed ID: 36463491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma.
    Mitchell PD; O'Byrne PM
    Pharmacol Ther; 2017 Jan; 169():104-112. PubMed ID: 27365223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response.
    Duchesne M; Okoye I; Lacy P
    Front Immunol; 2022; 13():975914. PubMed ID: 36311787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics.
    Porsbjerg CM; Sverrild A; Lloyd CM; Menzies-Gow AN; Bel EH
    Eur Respir J; 2020 Nov; 56(5):. PubMed ID: 32586879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antialarmins for treatment of asthma: future perspectives.
    Al-Sajee D; Oliveria JP; Sehmi R; Gauvreau GM
    Curr Opin Pulm Med; 2018 Jan; 24(1):32-41. PubMed ID: 29084017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymic Stromal Lymphopoietin and Tezepelumab in Airway Diseases: From Physiological Role to Target Therapy.
    Bagnasco D; De Ferrari L; Bondi B; Candeliere MG; Mincarini M; Riccio AM; Braido F
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymic stromal lymphopoietin and alarmins as possible therapeutical targets for asthma.
    Salvati L; Maggi L; Annunziato F; Cosmi L
    Curr Opin Allergy Clin Immunol; 2021 Dec; 21(6):590-596. PubMed ID: 34608100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmet need in severe, uncontrolled asthma: can anti-TSLP therapy with tezepelumab provide a valuable new treatment option?
    Menzies-Gow A; Wechsler ME; Brightling CE
    Respir Res; 2020 Oct; 21(1):268. PubMed ID: 33059715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and Regulation of Thymic Stromal Lymphopoietin and Thymic Stromal Lymphopoietin Receptor Heterocomplex in the Innate-Adaptive Immunity of Pediatric Asthma.
    Lin SC; Cheng FY; Liu JJ; Ye YL
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial alarmin levels in exhaled breath condensate in patients with idiopathic pulmonary fibrosis: A pilot study.
    Majewski S; Tworek D; Szewczyk K; Kurmanowska Z; Antczak A; Górski P; Piotrowski WJ
    Clin Respir J; 2019 Oct; 13(10):652-656. PubMed ID: 31392802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial-Derived Cytokines in Asthma.
    Mitchell PD; O'Byrne PM
    Chest; 2017 Jun; 151(6):1338-1344. PubMed ID: 27818325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an inhaled anti-TSLP therapy for asthma.
    O'Byrne PM; Panettieri RA; Taube C; Brindicci C; Fleming M; Altman P
    Pulm Pharmacol Ther; 2023 Feb; 78():102184. PubMed ID: 36535465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal Antibodies Targeting Alarmins: A New Perspective for Biological Therapies of Severe Asthma.
    Pelaia C; Pelaia G; Longhini F; Crimi C; Calabrese C; Gallelli L; Sciacqua A; Vatrella A
    Biomedicines; 2021 Aug; 9(9):. PubMed ID: 34572294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sputum IL-25, IL-33 and TSLP, IL-23 and IL-36 in airway obstructive diseases. Reduced levels of IL-36 in eosinophilic phenotype.
    Moermans C; Damas K; Guiot J; Njock MS; Corhay JL; Henket M; Schleich F; Louis R
    Cytokine; 2021 Apr; 140():155421. PubMed ID: 33486314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymic stromal lymphopoietin plays divergent roles in murine models of atopic and nonatopic airway inflammation.
    Yadava K; Massacand J; Mosconi I; Nicod LP; Harris NL; Marsland BJ
    Allergy; 2014 Oct; 69(10):1333-42. PubMed ID: 24961817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-alarmin approaches entering clinical trials.
    Gauvreau GM; White L; Davis BE
    Curr Opin Pulm Med; 2020 Jan; 26(1):69-76. PubMed ID: 31408015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TSLP is localized in and released from human lung macrophages activated by T2-high and T2-low stimuli: relevance in asthma and COPD.
    Canè L; Poto R; Palestra F; Pirozzi M; Parashuraman S; Iacobucci I; Ferrara AL; La Rocca A; Mercadante E; Pucci P; Marone G; Monti M; Loffredo S; Varricchi G
    Eur J Intern Med; 2024 Jun; 124():89-98. PubMed ID: 38402021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9
    Verma M; Liu S; Michalec L; Sripada A; Gorska MM; Alam R
    J Allergy Clin Immunol; 2018 Sep; 142(3):793-803.e8. PubMed ID: 29132961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.