These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36697423)

  • 1. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".
    Peters B; Blume-Werry G; Gillert A; Schwieger S; von Lukas UF; Kreyling J
    Sci Rep; 2023 Jan; 13(1):1399. PubMed ID: 36697423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet.
    Huang Y; Yan J; Zhang Y; Ye W; Zhang C; Gao P; Lv X
    Front Plant Sci; 2023; 14():1147034. PubMed ID: 37235030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of minirhizotron in fine root studies].
    Shi J; Yu L; Yu S; Han Y; Wang Z; Guo D
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):715-9. PubMed ID: 16836108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits.
    Lu W; Wang X; Wang F
    Plant Methods; 2019; 15():29. PubMed ID: 30949230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic discrimination of fine roots in minirhizotron images.
    Zeng G; Birchfield ST; Wells CE
    New Phytol; 2008; 177(2):549-557. PubMed ID: 18042202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traceable calibration, performance metrics, and uncertainty estimates of minirhizotron digital imagery for fine-root measurements.
    Roberti JA; SanClements MD; Loescher HW; Ayres E
    PLoS One; 2014; 9(11):e112362. PubMed ID: 25391023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons.
    Chen J; Liu L; Wang Z; Sun H; Zhang Y; Lu Z; Li C
    PLoS One; 2018; 13(5):e0197284. PubMed ID: 29750816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency root dynamics: sampling and interpretation using replicated robotic minirhizotrons.
    Nair R; Strube M; Hertel M; Kolle O; Rolo V; Migliavacca M
    J Exp Bot; 2023 Feb; 74(3):769-786. PubMed ID: 36273326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EnRoot: a narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production.
    Arnaud M; Baird AJ; Morris PJ; Harris A; Huck JJ
    Plant Methods; 2019; 15():101. PubMed ID: 31467587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.
    Rytter RM
    Tree Physiol; 2013 Sep; 33(9):924-39. PubMed ID: 23963409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digging roots is easier with AI.
    Han E; Smith AG; Kemper R; White R; Kirkegaard JA; Thorup-Kristensen K; Athmann M
    J Exp Bot; 2021 Jun; 72(13):4680-4690. PubMed ID: 33884416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of material used for minirhizotron tubes for root research.
    Withington JM; Elkin AD; Bułaj B; Olesiński J; Tracy KN; Bouma TJ; Oleksyn J; Anderson LJ; Modrzyński J; Reich PB; Eissenstat DM
    New Phytol; 2003 Dec; 160(3):533-544. PubMed ID: 33873660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring.
    Rahman G; Sohag H; Chowdhury R; Wahid KA; Dinh A; Arcand M; Vail S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline.
    Bauer FM; Lärm L; Morandage S; Lobet G; Vanderborght J; Vereecken H; Schnepf A
    Plant Phenomics; 2022; 2022():9758532. PubMed ID: 35693120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons.
    Ahrens B; Hansson K; Solly EF; Schrumpf M
    New Phytol; 2014 Dec; 204(4):932-42. PubMed ID: 25196967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for quantifying total fine root decomposition in plantation forests combining measurements of soil coring and minirhizotrons with a mass balance model.
    Li X; Minick KJ; Li T; Williamson JC; Gavazzi M; McNulty S; King JS
    Tree Physiol; 2020 Oct; 40(10):1466-1473. PubMed ID: 32510135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput
    Shen C; Liu L; Zhu L; Kang J; Wang N; Shao L
    Front Plant Sci; 2020; 11():576791. PubMed ID: 33193519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of roots in soil with U-Net.
    Smith AG; Petersen J; Selvan R; Rasmussen CR
    Plant Methods; 2020; 16():13. PubMed ID: 32055251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.