These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36697545)

  • 61. How is charge transport different in ionic liquids and electrolyte solutions?
    Kashyap HK; Annapureddy HV; Raineri FO; Margulis CJ
    J Phys Chem B; 2011 Nov; 115(45):13212-21. PubMed ID: 22022889
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 63. First-principles molecular dynamics simulation and conductivity measurements of a molten xLi2O-(1- x)B2O3 system.
    Ohkubo T; Tsuchida E; Gobet M; Sarou-Kanian V; Bessada C; Iwadate Y
    J Phys Chem B; 2013 May; 117(18):5668-74. PubMed ID: 23590459
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A theory of electrical conductivity of molten salt. II.
    Koishi T; Tamaki S
    J Chem Phys; 2004 Jul; 121(1):333-40. PubMed ID: 15260552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Charge Transport in [Li(tetraglyme)][bis(trifluoromethane) sulfonimide] Solvate Ionic Liquids: Insight from Molecular Dynamics Simulations.
    Dong D; Bedrov D
    J Phys Chem B; 2018 Nov; 122(43):9994-10004. PubMed ID: 30299097
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The origin of the conductivity maximum in molten salts. III. Zinc halides.
    Aravindakshan NP; Johnson KE; East ALL
    J Chem Phys; 2019 Jul; 151(3):034507. PubMed ID: 31325937
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A molecular dynamics study of a fully zwitterionic copolymer/ionic liquid-based electrolyte: Li
    C Lourenço T; Ebadi M; J Panzer M; Brandell D; T Costa L
    J Comput Chem; 2021 Sep; 42(23):1689-1703. PubMed ID: 34128552
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Highly Crystalized Co
    Gao S; Tang Y; Gao Y; Liu L; Zhao H; Li X; Wang X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7006-7013. PubMed ID: 30688434
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts.
    Harris KR
    J Phys Chem B; 2010 Jul; 114(29):9572-7. PubMed ID: 20593760
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular dynamics simulations of a lithium/sodium carbonate mixture.
    Ottochian A; Ricca C; Labat F; Adamo C
    J Mol Model; 2016 Mar; 22(3):61. PubMed ID: 26897519
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrochemical behaviors of polymer composite electrolytes containing imidazolium-type room-temperature molten salts.
    Kim S; Park SJ
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7265-8. PubMed ID: 19908770
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector.
    Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The origin of the conductivity maximum in molten salts. I. Bismuth chloride.
    Clay AT; Kuntz CM; Johnson KE; East AL
    J Chem Phys; 2012 Mar; 136(12):124504. PubMed ID: 22462871
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.
    Chen F; Forsyth M
    Phys Chem Chem Phys; 2016 Jul; 18(28):19336-44. PubMed ID: 27375042
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermal conductivity of molten alkali metal fluorides (LiF, NaF, KF) and their mixtures.
    Ishii Y; Sato K; Salanne M; Madden PA; Ohtori N
    J Phys Chem B; 2014 Mar; 118(12):3385-91. PubMed ID: 24635749
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The origin of the conductivity maximum in molten salts. II. SnCl2 and HgBr2.
    Aravindakshan NP; Kuntz CM; Gemmell KE; Johnson KE; East AL
    J Chem Phys; 2016 Sep; 145(9):094504. PubMed ID: 27609001
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computational Investigation of Mixed Anion Effect on Lithium Coordination and Transport in Salt Concentrated Ionic Liquid Electrolytes.
    Chen F; Forsyth M
    J Phys Chem Lett; 2019 Dec; 10(23):7414-7420. PubMed ID: 31722533
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.