BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36697569)

  • 1. Structure of a seeded palladium nanoparticle and its dynamics during the hydride phase transformation.
    Suzana AF; Wu L; Assefa TA; Williams BP; Harder R; Cha W; Kuo CH; Tsung CK; Robinson IK
    Commun Chem; 2021 May; 4(1):64. PubMed ID: 36697569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosynthesis of Unusual Nonfcc Palladium Hydride Nanoparticles.
    Hong J; Su X
    J Am Chem Soc; 2024 Jul; ():. PubMed ID: 38949127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification.
    Metzroth LJT; Miller EM; Norman AG; Yazdi S; Carroll GM
    Nano Lett; 2021 Nov; 21(21):9131-9137. PubMed ID: 34676756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Imaging of Subsurface Interstitial Hydrogen and Insights into Surface Reactivity of Palladium Hydrides.
    Lin B; Wu X; Xie L; Kang Y; Du H; Kang F; Li J; Gan L
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20348-20352. PubMed ID: 32621778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydride-induced-reduction strategy for fabricating palladium-based core-shell bimetallic nanocrystals.
    Wang X; Wu B; Chen G; Zhao Y; Liu P; Dai Y; Zheng N
    Nanoscale; 2014 Jun; 6(12):6798-804. PubMed ID: 24827462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D.
    Yau A; Harder RJ; Kanan MW; Ulvestad A
    ACS Nano; 2017 Nov; 11(11):10945-10954. PubMed ID: 29035558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering the encapsulation effect of reduced graphene oxide sheets on the hydrogen storage properties of palladium nanocubes.
    Koh J; Choi E; Sakaki K; Kim D; Han SM; Kim S; Cho ES
    Nanoscale; 2021 Oct; 13(40):16942-16951. PubMed ID: 34635893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-induced Ostwald ripening at room temperature in a Pd nanocluster film.
    Di Vece M; Grandjean D; Van Bael MJ; Romero CP; Wang X; Decoster S; Vantomme A; Lievens P
    Phys Rev Lett; 2008 Jun; 100(23):236105. PubMed ID: 18643522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons.
    Bhat VV; Contescu CI; Gallego NC
    Nanotechnology; 2009 May; 20(20):204011. PubMed ID: 19420659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.
    El Gowini MM; Moussa WA
    Sensors (Basel); 2010; 10(2):1232-50. PubMed ID: 22205865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The free-energy barrier to hydride transfer across a dipalladium complex.
    Vanston CR; Kearley GJ; Edwards AJ; Darwish TA; de Souza NR; Ramirez-Cuesta AJ; Gardiner MG
    Faraday Discuss; 2015; 177():99-109. PubMed ID: 25652724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles.
    Ulvestad A; Welland MJ; Collins SS; Harder R; Maxey E; Wingert J; Singer A; Hy S; Mulvaney P; Zapol P; Shpyrko OG
    Nat Commun; 2015 Dec; 6():10092. PubMed ID: 26655832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles.
    Ulvestad A; Yau A
    Nat Commun; 2017 Nov; 8(1):1376. PubMed ID: 29123126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption.
    Bugaev AL; Usoltsev OA; Lazzarini A; Lomachenko KA; Guda AA; Pellegrini R; Carosso M; Vitillo JG; Groppo E; van Bokhoven JA; Soldatov AV; Lamberti C
    Faraday Discuss; 2018 Sep; 208(0):187-205. PubMed ID: 29876557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and Non-equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals.
    Zhou S; Figueras-Valls M; Shi Y; Ding Y; Mavrikakis M; Xia Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202306906. PubMed ID: 37528509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape.
    Syrenova S; Wadell C; Nugroho FA; Gschneidtner TA; Diaz Fernandez YA; Nalin G; Świtlik D; Westerlund F; Antosiewicz TJ; Zhdanov VP; Moth-Poulsen K; Langhammer C
    Nat Mater; 2015 Dec; 14(12):1236-44. PubMed ID: 26343912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Release of Hydrogen Isotopes from Hydride-Magnetic Nanomaterials.
    Hunyadi Murph SE; Coopersmith K; Sessions H; Brown M; Larsen G
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9478-9488. PubMed ID: 31999095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme.
    Langhammer C; Zorić I; Kasemo B; Clemens BM
    Nano Lett; 2007 Oct; 7(10):3122-7. PubMed ID: 17850168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organo-Nanocups Assist the Formation of Ultra-Small Palladium Nanoparticle Catalysts for Hydrogen Evolution Reaction.
    Biehler E; Quach Q; Huff C; Abdel-Fattah TM
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect Dynamics at a Single Pt Nanoparticle during Catalytic Oxidation.
    Kim D; Chung M; Kim S; Yun K; Cha W; Harder R; Kim H
    Nano Lett; 2019 Aug; 19(8):5044-5052. PubMed ID: 31251070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.