These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36697594)

  • 21. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks.
    Son HJ; Jin S; Patwardhan S; Wezenberg SJ; Jeong NC; So M; Wilmer CE; Sarjeant AA; Schatz GC; Snurr RQ; Farha OK; Wiederrecht GP; Hupp JT
    J Am Chem Soc; 2013 Jan; 135(2):862-9. PubMed ID: 23249338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pristine Hollow Metal-Organic Frameworks: Design, Synthesis and Application.
    Qiu T; Gao S; Liang Z; Wang DG; Tabassum H; Zhong R; Zou R
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17314-17336. PubMed ID: 33124724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semiconducting Langmuir-Blodgett Films of Porphyrin Paddle-Wheel Frameworks for Photoelectric Conversion.
    Ishihara KM; Tian F
    Langmuir; 2018 Dec; 34(51):15689-15699. PubMed ID: 30485750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study.
    Rananaware A; Bhosale RS; Ohkubo K; Patil H; Jones LA; Jackson SL; Fukuzumi S; Bhosale SV; Bhosale SV
    J Org Chem; 2015 Apr; 80(8):3832-40. PubMed ID: 25822257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices.
    Schlachter A; Asselin P; Harvey PD
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26651-26672. PubMed ID: 34086450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon Enhanced Fluorescence Based on Porphyrin-Peptoid Hybridized Gold Nanoparticle Platform.
    Kim Y; Kang B; Ahn HY; Seo J; Nam KT
    Small; 2017 Jul; 13(26):. PubMed ID: 28513982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Hybrid Metal-Organic Frameworks: Tuning the Visible/Near-Infrared Optical Properties by a Combination of Porphyrin and Its Isomer Units.
    Yang Y; Ishida M; Yasutake Y; Fukatsu S; Fukakusa C; Morikawa MA; Yamada T; Kimizuka N; Furuta H
    Inorg Chem; 2019 Apr; 58(7):4647-4656. PubMed ID: 30875205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media.
    Younis SA; Lim DK; Kim KH; Deep A
    Adv Colloid Interface Sci; 2020 Mar; 277():102108. PubMed ID: 32028075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porpholactone Chemistry: An Emerging Approach to Bioinspired Photosensitizers with Tunable Near-Infrared Photophysical Properties.
    Ning Y; Jin GQ; Zhang JL
    Acc Chem Res; 2019 Sep; 52(9):2620-2633. PubMed ID: 31298833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted Construction of Light-Harvesting Metal-Organic Frameworks Featuring Efficient Host-Guest Energy Transfer.
    Zhao X; Song X; Li Y; Chang Z; Chen L
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5633-5640. PubMed ID: 29350906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.
    Jin S; Son HJ; Farha OK; Wiederrecht GP; Hupp JT
    J Am Chem Soc; 2013 Jan; 135(3):955-8. PubMed ID: 23293894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photo- and electro-functional self-assembled architectures of porphyrins.
    Hasobe T
    Phys Chem Chem Phys; 2012 Dec; 14(46):15975-87. PubMed ID: 23093225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of carbon-metal-carbon linkages on the optical, photophysical, and electrochemical properties of phosphametallacycle-linked coplanar porphyrin dimers.
    Matano Y; Matsumoto K; Hayashi H; Nakao Y; Kumpulainen T; Chukharev V; Tkachenko NV; Lemmetyinen H; Shimizu S; Kobayashi N; Sakamaki D; Ito A; Tanaka K; Imahori H
    J Am Chem Soc; 2012 Jan; 134(3):1825-39. PubMed ID: 22148321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Topology on Photodynamic Sterilization of Porphyrinic Metal-Organic Frameworks.
    Liu YY; Chen LJ; Zhao X; Yan XP
    Chemistry; 2021 Jul; 27(39):10151-10159. PubMed ID: 33978976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous flexible frameworks: origins of flexibility and applications.
    Seth S; Jhulki S
    Mater Horiz; 2021 Mar; 8(3):700-727. PubMed ID: 34821313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermo-, Electro-, and Photocatalytic CO
    Wu QJ; Liang J; Huang YB; Cao R
    Acc Chem Res; 2022 Oct; 55(20):2978-2997. PubMed ID: 36153952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photophysical comparison of Zn(II) phthalocyanaine tetrasulfonate and Zn(II) tetrakis(4-sulfonatophenyl)porphyrin encapsulated within the Zn-polyhedral metal organic framework, HKUST-1(Zn).
    Larsen RW; Wojtas L
    Dalton Trans; 2022 Aug; 51(33):12729-12735. PubMed ID: 35946557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical solar-to-electrical energy-conversion efficiencies of perylene-porphyrin light-harvesting arrays.
    Hasselman GM; Watson DF; Stromberg JR; Bocian DF; Holten D; Lindsey JS; Meyer GJ
    J Phys Chem B; 2006 Dec; 110(50):25430-40. PubMed ID: 17165990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.