These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 36697747)
1. Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries. Pai R; Singh A; Tang MH; Kalra V Commun Chem; 2022 Feb; 5(1):17. PubMed ID: 36697747 [TBL] [Abstract][Full Text] [Related]
2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
3. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
4. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple. Su YS; Fu Y; Guo B; Dai S; Manthiram A Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897 [TBL] [Abstract][Full Text] [Related]
5. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Li X; Banis M; Lushington A; Yang X; Sun Q; Zhao Y; Liu C; Li Q; Wang B; Xiao W; Wang C; Li M; Liang J; Li R; Hu Y; Goncharova L; Zhang H; Sham TK; Sun X Nat Commun; 2018 Oct; 9(1):4509. PubMed ID: 30375387 [TBL] [Abstract][Full Text] [Related]
6. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries. Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660 [TBL] [Abstract][Full Text] [Related]
7. In Situ Imaging Polysulfides Electrochemistry of Li-S Batteries in a Hollow Carbon Nanotubule Wet Electrochemical Cell. Wang Z; Tang Y; Fu X; Wang J; Peng Z; Zhang L; Huang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):55971-55981. PubMed ID: 33284589 [TBL] [Abstract][Full Text] [Related]
8. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861 [TBL] [Abstract][Full Text] [Related]
9. Insight into sulfur reactions in Li-S batteries. Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055 [TBL] [Abstract][Full Text] [Related]
10. Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries. Hua W; Li H; Pei C; Xia J; Sun Y; Zhang C; Lv W; Tao Y; Jiao Y; Zhang B; Qiao SZ; Wan Y; Yang QH Adv Mater; 2021 Sep; 33(38):e2101006. PubMed ID: 34338356 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co Zeng P; Liu C; Zhao X; Yuan C; Chen Y; Lin H; Zhang L ACS Nano; 2020 Sep; 14(9):11558-11569. PubMed ID: 32865976 [TBL] [Abstract][Full Text] [Related]
12. Emerging Strategies for Gel Polymer Electrolytes with Improved Dual-Electrode Side Regulation Mechanisms for Lithium-Sulfur Batteries. Cui Y; Li J; Yuan X; Liu J; Zhang H; Wu H; Cai Y Chem Asian J; 2022 Nov; 17(21):e202200746. PubMed ID: 36031710 [TBL] [Abstract][Full Text] [Related]
13. Shielding Polysulfide Intermediates by an Organosulfur-Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium-Sulfur Batteries. Wei JY; Zhang XQ; Hou LP; Shi P; Li BQ; Xiao Y; Yan C; Yuan H; Huang JQ Adv Mater; 2020 Sep; 32(37):e2003012. PubMed ID: 32761715 [TBL] [Abstract][Full Text] [Related]
14. New High Donor Electrolyte for Lithium-Sulfur Batteries. Baek M; Shin H; Char K; Choi JW Adv Mater; 2020 Dec; 32(52):e2005022. PubMed ID: 33184954 [TBL] [Abstract][Full Text] [Related]
15. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries. Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220 [TBL] [Abstract][Full Text] [Related]
16. Improving Electrochemical Performance and Safety of Lithium-Sulfur Batteries by a "Bulletproof Vest". Zheng S; Zhang H; Fan J; Xu Q; Min Y ACS Appl Mater Interfaces; 2020 Nov; 12(46):51904-51916. PubMed ID: 33146511 [TBL] [Abstract][Full Text] [Related]
17. The reduction behavior of sulfurized polyacrylonitrile (SPAN) in lithium-sulfur batteries using a carbonate electrolyte: a computational study. Klostermann SV; Kappler J; Waigum A; Buchmeiser MR; Köhn A; Kästner J Phys Chem Chem Phys; 2024 Mar; 26(13):9998-10007. PubMed ID: 38477497 [TBL] [Abstract][Full Text] [Related]
18. High-Energy-Density, Long-Life Lithium-Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe-Ni Nanoalloy Catalysts. He J; Bhargav A; Manthiram A ACS Nano; 2021 May; 15(5):8583-8591. PubMed ID: 33891408 [TBL] [Abstract][Full Text] [Related]
19. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286 [TBL] [Abstract][Full Text] [Related]
20. A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries. Wu X; Liu N; Wang M; Qiu Y; Guan B; Tian D; Guo Z; Fan L; Zhang N ACS Nano; 2019 Nov; 13(11):13109-13115. PubMed ID: 31647637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]