BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36697817)

  • 1. Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes.
    Rhlee JH; Maiti S; Lee JW; Lee HS; Bakhtiyorzoda IA; Lee S; Park J; Kang SJ; Kim YS; Seo JK; Myung K; Choe W; Hong SY
    Commun Chem; 2022 Feb; 5(1):13. PubMed ID: 36697817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox-Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes.
    Murugesan V; Muralidharan A; Anantharaj GV; Chinnusamy T; Rasappan R
    Org Lett; 2022 Nov; 24(45):8435-8440. PubMed ID: 36342240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α- and β-Functionalized Ketones from 1,3-Dienes and Aldehydes: Control of Regio- and Enantioselectivity in Hydroacylation of 1,3-Dienes.
    Parsutkar MM; RajanBabu TV
    J Am Chem Soc; 2021 Aug; 143(32):12825-12835. PubMed ID: 34351138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A redox-neutral synthesis of ketones by coupling of alkenes and amides.
    Li J; Oost R; Maryasin B; González L; Maulide N
    Nat Commun; 2019 May; 10(1):2327. PubMed ID: 31127092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation.
    Moseley DF; Kalepu J; Willis MC
    Chem Sci; 2021 Oct; 12(39):13068-13073. PubMed ID: 34745537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced, Metal-Free Hydroacylation of Aromatic Alkynes for Synthesis of α,β-Unsaturated Ketones via C(sp
    Kushwaha AK; Kamal A; Singh HK; Maury SK; Mondal T; Singh S
    Org Lett; 2024 Feb; 26(7):1416-1420. PubMed ID: 38329826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syngas-Free Highly Regioselective Rhodium-Catalyzed Transfer Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes.
    Tan G; Wu Y; Shi Y; You J
    Angew Chem Int Ed Engl; 2019 May; 58(22):7440-7444. PubMed ID: 30963651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expedient Synthesis of 1,5-Diketones by Rhodium-Catalyzed Hydroacylation Enabled by C-C Bond Cleavage.
    Guo R; Zhang G
    J Am Chem Soc; 2017 Sep; 139(37):12891-12894. PubMed ID: 28856892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroacylation of 2-Butyne from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation.
    Williams VM; Leung JC; Patman RL; Krische MJ
    Tetrahedron; 2009 Jun; 65(26):5024-5029. PubMed ID: 20613891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications.
    Weber S; Kirchner K
    Acc Chem Res; 2022 Sep; 55(18):2740-2751. PubMed ID: 36074912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium-Catalyzed Ring-Opening Hydroacylation of Alkylidenecyclopropanes with Chelating Aldehydes for the Synthesis of γ,δ-Unsaturated Ketones.
    Li HS; Lu SC; Chang ZX; Hao L; Li FR; Xia C
    Org Lett; 2020 Jul; 22(13):5145-5150. PubMed ID: 32610932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroacylation of alpha,beta-unsaturated esters via aerobic C-H activation.
    Chudasama V; Fitzmaurice RJ; Caddick S
    Nat Chem; 2010 Jul; 2(7):592-6. PubMed ID: 20571580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium-catalyzed intermolecular hydroacylation of internal alkynes: the use of ceria-supported catalyst facilitates the catalyst recycling.
    Miura H; Wada K; Hosokawa S; Inoue M
    Chemistry; 2013 Jan; 19(3):861-4. PubMed ID: 23233450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridium-catalyzed coupling reaction of primary alcohols with 2-alkynes leading to hydroacylation products.
    Hatanaka S; Obora Y; Ishii Y
    Chemistry; 2010 Feb; 16(6):1883-8. PubMed ID: 20029924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale.
    Barwick-Silk J; Hardy S; Willis MC; Weller AS
    J Am Chem Soc; 2018 Jun; 140(23):7347-7357. PubMed ID: 29763563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.