These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36697817)

  • 1. Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes.
    Rhlee JH; Maiti S; Lee JW; Lee HS; Bakhtiyorzoda IA; Lee S; Park J; Kang SJ; Kim YS; Seo JK; Myung K; Choe W; Hong SY
    Commun Chem; 2022 Feb; 5(1):13. PubMed ID: 36697817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox-Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes.
    Murugesan V; Muralidharan A; Anantharaj GV; Chinnusamy T; Rasappan R
    Org Lett; 2022 Nov; 24(45):8435-8440. PubMed ID: 36342240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α- and β-Functionalized Ketones from 1,3-Dienes and Aldehydes: Control of Regio- and Enantioselectivity in Hydroacylation of 1,3-Dienes.
    Parsutkar MM; RajanBabu TV
    J Am Chem Soc; 2021 Aug; 143(32):12825-12835. PubMed ID: 34351138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A redox-neutral synthesis of ketones by coupling of alkenes and amides.
    Li J; Oost R; Maryasin B; González L; Maulide N
    Nat Commun; 2019 May; 10(1):2327. PubMed ID: 31127092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation.
    Moseley DF; Kalepu J; Willis MC
    Chem Sci; 2021 Oct; 12(39):13068-13073. PubMed ID: 34745537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced, Metal-Free Hydroacylation of Aromatic Alkynes for Synthesis of α,β-Unsaturated Ketones via C(sp
    Kushwaha AK; Kamal A; Singh HK; Maury SK; Mondal T; Singh S
    Org Lett; 2024 Feb; 26(7):1416-1420. PubMed ID: 38329826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syngas-Free Highly Regioselective Rhodium-Catalyzed Transfer Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes.
    Tan G; Wu Y; Shi Y; You J
    Angew Chem Int Ed Engl; 2019 May; 58(22):7440-7444. PubMed ID: 30963651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expedient Synthesis of 1,5-Diketones by Rhodium-Catalyzed Hydroacylation Enabled by C-C Bond Cleavage.
    Guo R; Zhang G
    J Am Chem Soc; 2017 Sep; 139(37):12891-12894. PubMed ID: 28856892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroacylation of 2-Butyne from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation.
    Williams VM; Leung JC; Patman RL; Krische MJ
    Tetrahedron; 2009 Jun; 65(26):5024-5029. PubMed ID: 20613891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications.
    Weber S; Kirchner K
    Acc Chem Res; 2022 Sep; 55(18):2740-2751. PubMed ID: 36074912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium-Catalyzed Ring-Opening Hydroacylation of Alkylidenecyclopropanes with Chelating Aldehydes for the Synthesis of γ,δ-Unsaturated Ketones.
    Li HS; Lu SC; Chang ZX; Hao L; Li FR; Xia C
    Org Lett; 2020 Jul; 22(13):5145-5150. PubMed ID: 32610932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroacylation of alpha,beta-unsaturated esters via aerobic C-H activation.
    Chudasama V; Fitzmaurice RJ; Caddick S
    Nat Chem; 2010 Jul; 2(7):592-6. PubMed ID: 20571580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium-catalyzed intermolecular hydroacylation of internal alkynes: the use of ceria-supported catalyst facilitates the catalyst recycling.
    Miura H; Wada K; Hosokawa S; Inoue M
    Chemistry; 2013 Jan; 19(3):861-4. PubMed ID: 23233450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridium-catalyzed coupling reaction of primary alcohols with 2-alkynes leading to hydroacylation products.
    Hatanaka S; Obora Y; Ishii Y
    Chemistry; 2010 Feb; 16(6):1883-8. PubMed ID: 20029924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale.
    Barwick-Silk J; Hardy S; Willis MC; Weller AS
    J Am Chem Soc; 2018 Jun; 140(23):7347-7357. PubMed ID: 29763563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.