These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36697913)

  • 1. Frontal polymerization-triggered simultaneous ring-opening metathesis polymerization and cross metathesis affords anisotropic macroporous dicyclopentadiene cellulose nanocrystal foam.
    Park J; Kwak SY
    Commun Chem; 2022 Oct; 5(1):119. PubMed ID: 36697913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic Foams via Frontal Polymerization.
    Alzate-Sanchez DM; Cencer MM; Rogalski M; Kersh ME; Sottos N; Moore JS
    Adv Mater; 2022 Feb; 34(8):e2105821. PubMed ID: 34762324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontal Ring-Opening Metathesis Copolymerization: Deviation of Front Velocity from Mixing Rules.
    Liu H; Wei H; Moore JS
    ACS Macro Lett; 2019 Jul; 8(7):846-851. PubMed ID: 35619510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous ZnO foams by high internal phase emulsion technique: synthesis and catalytic activity.
    Kovačič S; Anžlovar A; Erjavec B; Kapun G; Matsko NB; Žigon M; Žagar E; Pintar A; Slugovc C
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19075-81. PubMed ID: 25335099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching Frontal Polymerization Mechanisms: FROMP and FRaP.
    Lessard JJ; Kaur P; Paul JE; Chang KM; Sottos NR; Moore JS
    ACS Macro Lett; 2022 Sep; 11(9):1097-1101. PubMed ID: 35998375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Initiated Ring-Opening Metathesis Polymerization of Dicyclopentadiene from the Vapor Phase.
    Njoroge I; Kempler PA; Deng X; Arnold ST; Jennings GK
    Langmuir; 2017 Dec; 33(49):13903-13912. PubMed ID: 29125298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontal Ring-Opening Metathesis Polymerization of Exo-Dicyclopentadiene for Low Catalyst Loadings.
    Robertson ID; Pruitt EL; Moore JS
    ACS Macro Lett; 2016 May; 5(5):593-596. PubMed ID: 35632377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoredox-Initiated Frontal Ring-Opening Metathesis Polymerization.
    Stawiasz KJ; Wendell CI; Suslick BA; Moore JS
    ACS Macro Lett; 2022 Jun; 11(6):780-784. PubMed ID: 35638608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.
    Kozłowska A; Dranka M; Zachara J; Pump E; Slugovc C; Skowerski K; Grela K
    Chemistry; 2014 Oct; 20(43):14120-5. PubMed ID: 25204738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Oxygen Scavenging of Macroporous Poly(Norbornadiene) Prepared by Ring-Opening Metathesis Polymerization.
    Vakalopoulou E; Borisov SM; Slugovc C
    Macromol Rapid Commun; 2020 Mar; 41(5):e1900581. PubMed ID: 32031747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontal Polymerization of Dicyclopentadiene: A Numerical Study.
    Goli E; Robertson ID; Geubelle PH; Moore JS
    J Phys Chem B; 2018 Apr; 122(16):4583-4591. PubMed ID: 29664637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Self-Healing System for Polydicyclopentadiene Thermosets.
    Lee YB; Suslick BA; de Jong D; Wilson GO; Moore JS; Sottos NR; Braun PV
    Adv Mater; 2024 Mar; 36(11):e2309662. PubMed ID: 38087908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Macroporous PolyDCPD Composites from Surface-Modified Calcite-Stabilized High Internal Phase Emulsions.
    Eslek A; Mert HH; Sözbir M; Alaasar M; Mert EH
    Polymers (Basel); 2023 Jan; 15(1):. PubMed ID: 36616580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latent and Air-Stable Pre-Catalysts for the Polymerization of Dicyclopentadiene: From Penta- to Hexacoordination in Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes.
    Elser I; Kordes BR; Frey W; Herz K; Schowner R; Stöhr L; Altmann HJ; Buchmeiser MR
    Chemistry; 2018 Aug; 24(48):12652-12659. PubMed ID: 29888813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and environment-friendly approach for synthesizing macroporous polymers from aqueous foams.
    Tan H; Tu S; Zhao Y; Wang H; Du Q
    J Colloid Interface Sci; 2018 Jan; 509():209-218. PubMed ID: 28910686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volumetric Additive Manufacturing of Dicyclopentadiene by Solid-State Photopolymerization.
    Hausladen MM; Baca E; Nogales KA; Appelhans LN; Kaehr B; Hamel CM; Leguizamon SC
    Adv Sci (Weinh); 2024 Sep; 11(34):e2402385. PubMed ID: 38965931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of density, phonon scattering and nanoporosity on the thermal conductivity of anisotropic cellulose nanocrystal foams.
    Apostolopoulou-Kalkavoura V; Munier P; Dlugozima L; Heuthe VL; Bergström L
    Sci Rep; 2021 Sep; 11(1):18685. PubMed ID: 34548539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoexcitation of Grubbs' Second-Generation Catalyst Initiates Frontal Ring-Opening Metathesis Polymerization.
    Stawiasz KJ; Paul JE; Schwarz KJ; Sottos NR; Moore JS
    ACS Macro Lett; 2020 Nov; 9(11):1563-1568. PubMed ID: 35617057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unprecedented Selectivity of Ruthenium Iodide Benzylidenes in Olefin Metathesis Reactions.
    Nechmad NB; Phatake R; Ivry E; Poater A; Lemcoff NG
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3539-3543. PubMed ID: 31863712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose.
    Hu Z; Xu R; Cranston ED; Pelton RH
    Biomacromolecules; 2016 Dec; 17(12):4095-4099. PubMed ID: 27936719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.