BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36698077)

  • 1. peaksat: an R package for ChIP-seq peak saturation analysis.
    Boyd JR; Gao C; Quinn K; Fritz A; Stein J; Stein G; Glass K; Frietze S
    BMC Genomics; 2023 Jan; 24(1):43. PubMed ID: 36698077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Commercial ChIP-Seq Library Preparation Kits Performed Differently for Different Classes of Protein Targets.
    Simper MS; Coletta LD; Gaddis S; Lin K; Mikulec CD; Takata T; Tomida MW; Zhang D; Tang DG; Estecio MR; Shen J; Lu Y
    J Biomol Tech; 2022 Oct; 33(3):. PubMed ID: 36910579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of sequencing depth in ChIP-seq experiments.
    Jung YL; Luquette LJ; Ho JW; Ferrari F; Tolstorukov M; Minoda A; Issner R; Epstein CB; Karpen GH; Kuroda MI; Park PJ
    Nucleic Acids Res; 2014 May; 42(9):e74. PubMed ID: 24598259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
    Newell R; Pienaar R; Balderson B; Piper M; Essebier A; Bodén M
    Genomics; 2021 Jul; 113(4):1855-1866. PubMed ID: 33878366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications.
    Grzybowski AT; Shah RN; Richter WF; Ruthenburg AJ
    Nat Protoc; 2019 Dec; 14(12):3275-3302. PubMed ID: 31723301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis.
    Ho JW; Bishop E; Karchenko PV; Nègre N; White KP; Park PJ
    BMC Genomics; 2011 Feb; 12():134. PubMed ID: 21356108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Comparison of Multiple Chromatin Immunoprecipitation-Sequencing (ChIP-seq) Experiments with spikChIP.
    Blanco E; Ballaré C; Di Croce L; Aranda S
    Methods Mol Biol; 2023; 2624():55-72. PubMed ID: 36723809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of factors associated with duplicate rate in ChIP-seq data.
    Tian S; Peng S; Kalmbach M; Gaonkar KS; Bhagwate A; Ding W; Eckel-Passow J; Yan H; Slager SL
    PLoS One; 2019; 14(4):e0214723. PubMed ID: 30943272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AIAP: A Quality Control and Integrative Analysis Package to Improve ATAC-seq Data Analysis.
    Liu S; Li D; Lyu C; Gontarz PM; Miao B; Madden PAF; Wang T; Zhang B
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):641-651. PubMed ID: 34273560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MESIA: multi-epigenome sample integration approach for precise peak calling.
    Park SG; Kim WJ; Moon JI; Kim KT; Ryoo HM
    Sci Rep; 2023 Nov; 13(1):20859. PubMed ID: 38012291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference.
    Pranzatelli TJF; Michael DG; Chiorini JA
    BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing histone ChIP-seq data with a bin-based probability of being signal.
    Hecht V; Dong K; Rajesh S; Shpilker P; Wekhande S; Shoresh N
    PLoS Comput Biol; 2023 Oct; 19(10):e1011568. PubMed ID: 37862349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical characterisation of strand cross-correlation in ChIP-seq.
    Anzawa H; Yamagata H; Kinoshita K
    BMC Bioinformatics; 2020 Sep; 21(1):417. PubMed ID: 32962634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive 100-bp resolution genome-wide epigenomic profiling data for the hg38 human reference genome.
    Li RY; Huang Y; Zhao Z; Qin ZS
    Data Brief; 2023 Feb; 46():108827. PubMed ID: 36582986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoBRA: Containerized Bioinformatics Workflow for Reproducible ChIP/ATAC-seq Analysis.
    Qiu X; Feit AS; Feiglin A; Xie Y; Kesten N; Taing L; Perkins J; Gu S; Li Y; Cejas P; Zhou N; Jeselsohn R; Brown M; Shirley Liu X; Long HW
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):652-661. PubMed ID: 34284136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WACS: improving ChIP-seq peak calling by optimally weighting controls.
    Awdeh A; Turcotte M; Perkins TJ
    BMC Bioinformatics; 2021 Feb; 22(1):69. PubMed ID: 33588754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.