These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 36698208)

  • 1. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis.
    Ren ZH; You ZH; Zou Q; Yu CQ; Ma YF; Guan YJ; You HR; Wang XF; Pan J
    J Transl Med; 2023 Jan; 21(1):48. PubMed ID: 36698208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
    E Z; Qiao G; Wang G; Li Y
    Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MFA-DTI: Drug-target interaction prediction based on multi-feature fusion adopted framework.
    Chen S; Li M; Semenov I
    Methods; 2024 Apr; 224():79-92. PubMed ID: 38430967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction.
    Qian Y; Li X; Wu J; Zhang Q
    BMC Bioinformatics; 2023 Aug; 24(1):323. PubMed ID: 37633938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction.
    Qiu X; Wang H; Tan X; Fang Z
    Comput Biol Med; 2024 May; 173():108376. PubMed ID: 38552281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving drug-drug interactions prediction with interpretability via meta-path-based information fusion.
    Zhao W; Yuan X; Shen X; Jiang X; Shi C; He T; Hu X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36750041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous biomedical entity representation learning for gene-disease association prediction.
    Meng Z; Liu S; Liang S; Jani B; Meng Z
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39154194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction.
    Zhang R; Wang Z; Wang X; Meng Z; Cui W
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-modality attribute learning-based method for drug-protein interaction prediction based on deep neural network.
    Dong W; Yang Q; Wang J; Xu L; Li X; Luo G; Gao X
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37114624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Explainable Framework for Predicting Drug-Side Effect Associations via Meta-Path-Based Feature Learning in Heterogeneous Information Network.
    Zhao W; Yao W; Jiang X; He T; Shi C; Hu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3635-3647. PubMed ID: 37616131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.