These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 36698291)

  • 21. MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method.
    Liu Y; Lei Y; Wang T; Kayode O; Tian S; Liu T; Patel P; Curran WJ; Ren L; Yang X
    Br J Radiol; 2019 Aug; 92(1100):20190067. PubMed ID: 31192695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients.
    Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG
    Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422
    [No Abstract]   [Full Text] [Related]  

  • 23. Improvement of 2D cine image quality using 3D priors and cycle generative adversarial network for low field MRI-guided radiation therapy.
    Dong Y; Yang F; Wen J; Cai J; Zeng F; Liu M; Li S; Wang J; Ford JC; Portelance L; Yang Y
    Med Phys; 2024 May; 51(5):3495-3509. PubMed ID: 38043123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Region of interest focused MRI to synthetic CT translation using regression and segmentation multi-task network.
    Kaushik SS; Bylund M; Cozzini C; Shanbhag D; Petit SF; Wyatt JJ; Menzel MI; Pirkl C; Mehta B; Chauhan V; Chandrasekharan K; Jonsson J; Nyholm T; Wiesinger F; Menze B
    Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37567235
    [No Abstract]   [Full Text] [Related]  

  • 25. A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images.
    Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H
    Radiat Oncol; 2022 Apr; 17(1):69. PubMed ID: 35392947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue segmentation-based electron density mapping for MR-only radiotherapy treatment planning of brain using conventional T1-weighted MR images.
    Yu H; Oliver M; Leszczynski K; Lee Y; Karam I; Sahgal A
    J Appl Clin Med Phys; 2019 Aug; 20(8):11-20. PubMed ID: 31257709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets.
    Lee D; Jeong SW; Kim SJ; Cho H; Park W; Han Y
    Med Phys; 2021 Oct; 48(10):5593-5610. PubMed ID: 34418109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy.
    Xue X; Ding Y; Shi J; Hao X; Li X; Li D; Wu Y; An H; Jiang M; Wei W; Wang X
    Technol Cancer Res Treat; 2021; 20():15330338211062415. PubMed ID: 34851204
    [No Abstract]   [Full Text] [Related]  

  • 29. Improving generalization in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with unpaired data.
    Brou Boni KND; Klein J; Gulyban A; Reynaert N; Pasquier D
    Med Phys; 2021 Jun; 48(6):3003-3010. PubMed ID: 33772814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparison Study Between CNN-Based Deformed Planning CT and CycleGAN-Based Synthetic CT Methods for Improving iCBCT Image Quality.
    Yang B; Chang Y; Liang Y; Wang Z; Pei X; Xu XG; Qiu J
    Front Oncol; 2022; 12():896795. PubMed ID: 35707352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of Bayesian deep network uncertainty and its application to synthetic CT generation for MR-only radiotherapy treatment planning.
    Law MW; Tse MY; Ho LC; Lau KK; Wong OL; Yuan J; Cheung KY; Yu SK
    Med Phys; 2024 Feb; 51(2):1244-1262. PubMed ID: 37665783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generating synthetic CTs from magnetic resonance images using generative adversarial networks.
    Emami H; Dong M; Nejad-Davarani SP; Glide-Hurst CK
    Med Phys; 2018 Jun; ():. PubMed ID: 29901223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model.
    Peng J; Qiu RLJ; Wynne JF; Chang CW; Pan S; Wang T; Roper J; Liu T; Patel PR; Yu DS; Yang X
    Med Phys; 2024 Mar; 51(3):1847-1859. PubMed ID: 37646491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy.
    Wang H; Liu X; Kong L; Huang Y; Chen H; Ma X; Duan Y; Shao Y; Feng A; Shen Z; Gu H; Kong Q; Xu Z; Zhou Y
    Strahlenther Onkol; 2023 May; 199(5):485-497. PubMed ID: 36688953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma.
    Jihong C; Kerun Q; Kaiqiang C; Xiuchun Z; Yimin Z; Penggang B
    Sci Rep; 2023 Apr; 13(1):6624. PubMed ID: 37095147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.
    Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T
    Med Phys; 2020 Apr; 47(4):1880-1894. PubMed ID: 32027027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison and evaluation of different deep learning models of synthetic CT generation from CBCT for nasopharynx cancer adaptive proton therapy.
    Pang B; Si H; Liu M; Fu W; Zeng Y; Liu H; Cao T; Chang Y; Quan H; Yang Z
    Med Phys; 2023 Nov; 50(11):6920-6930. PubMed ID: 37800874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network.
    Brou Boni KND; Klein J; Vanquin L; Wagner A; Lacornerie T; Pasquier D; Reynaert N
    Phys Med Biol; 2020 Apr; 65(7):075002. PubMed ID: 32053808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthetic CT generation for pelvic cases based on deep learning in multi-center datasets.
    Li X; Jia L; Lin F; Chai F; Liu T; Zhang W; Wei Z; Xiong W; Li H; Zhang M; Wang Y
    Radiat Oncol; 2024 Jul; 19(1):89. PubMed ID: 38982452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.