These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 36698294)
1. A Mechanically Reinforced Super Bone Glue Makes a Leap in Hard Tissue Strong Adhesion and Augmented Bone Regeneration. Hu S; Wang S; He Q; Li D; Xin L; Xu C; Zhu X; Mei L; Cannon RD; Ji P; Tang H; Chen T Adv Sci (Weinh); 2023 Apr; 10(11):e2206450. PubMed ID: 36698294 [TBL] [Abstract][Full Text] [Related]
2. Engineering Wet-Resistant and Osteogenic Nanocomposite Adhesive to Control Bleeding and Infection after Median Sternotomy. Shokri M; Kharaziha M; Ahmadi Tafti H; Dalili F; Mehdinavaz Aghdam R; Baghaban Eslaminejad M Adv Healthc Mater; 2024 Jul; 13(19):e2304349. PubMed ID: 38593272 [TBL] [Abstract][Full Text] [Related]
3. Degradable Nanohydroxyapatite-Reinforced Superglue for Rapid Bone Fixation and Promoted Osteogenesis. Yang R; Chen B; Zhang X; Bao Z; Yan Q; Luan S ACS Nano; 2024 Mar; 18(11):8517-8530. PubMed ID: 38442407 [TBL] [Abstract][Full Text] [Related]
4. Overcoming the Dilemma of In Vivo Stable Adhesion and Sustained Degradation by the Molecular Design of Polyurethane Adhesives for Bone Fracture Repair. Li Q; Tang B; Liu X; Chen B; Wang X; Xiao H; Zheng Z Adv Healthc Mater; 2024 Feb; 13(5):e2301870. PubMed ID: 38145973 [TBL] [Abstract][Full Text] [Related]
5. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. Liu Y; Zhu Z; Pei X; Zhang X; Cheng X; Hu S; Gao X; Wang J; Chen J; Wan Q ACS Appl Mater Interfaces; 2020 Aug; 12(33):36978-36995. PubMed ID: 32814397 [TBL] [Abstract][Full Text] [Related]
6. Effect of Different Bone Grafting Materials and Mesenchymal Stem Cells on Bone Regeneration: A Micro-Computed Tomography and Histomorphometric Study in a Rabbit Calvarial Defect Model. Shiu ST; Lee WF; Chen SM; Hao LT; Hung YT; Lai PC; Feng SW Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360864 [TBL] [Abstract][Full Text] [Related]
7. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. Lee YC; Chan YH; Hsieh SC; Lew WZ; Feng SW Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658685 [TBL] [Abstract][Full Text] [Related]
8. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
9. Ex-vivo biomechanical testing of pig femur diaphysis B type fracture fixed by novel biodegradable bone glue. Krtička M; Michlovská L; Nekuda V; Poláček P; Valová K; Žídek J; Kaiser J; Zikmund T; Vojtová L J Mech Behav Biomed Mater; 2021 Mar; 115():104249. PubMed ID: 33340777 [TBL] [Abstract][Full Text] [Related]
10. In vitro/ in vivo evaluation of double crosslinked bone glue with different degrees. Fan W; Liu Y; Hou F; Zhao F; Wu B; Jiang W Biotechnol Genet Eng Rev; 2024 Dec; 40(4):3047-3063. PubMed ID: 37078415 [TBL] [Abstract][Full Text] [Related]
11. [ Wang JQ; Wang X Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 53(2):378-383. PubMed ID: 33879914 [TBL] [Abstract][Full Text] [Related]
12. Bone augmentation in rabbit calvariae: comparative study between Bio-Oss and a novel beta-TCP/DCPD granulate. Tamimi FM; Torres J; Tresguerres I; Clemente C; López-Cabarcos E; Blanco LJ J Clin Periodontol; 2006 Dec; 33(12):922-8. PubMed ID: 17092243 [TBL] [Abstract][Full Text] [Related]
13. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. Wei J; Yan Y; Gao J; Li Y; Wang R; Wang J; Zou Q; Zuo Y; Zhu M; Li J Biomater Adv; 2022 Feb; 133():112618. PubMed ID: 35031175 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769 [TBL] [Abstract][Full Text] [Related]
15. Molecular structure of the bony tissue after experimental trauma to the mandibular region followed by laser therapy. Rochkind S; Kogan G; Luger EG; Salame K; Karp E; Graif M; Weiss J Photomed Laser Surg; 2004 Jun; 22(3):249-53. PubMed ID: 15315733 [TBL] [Abstract][Full Text] [Related]
16. Repair of experimental calvarial defects with Bio-Oss particles and collagen sponges in a rabbit model. Thaller SR; Hoyt J; Dart A; Borjeson K; Tesluk H J Craniofac Surg; 1994 Sep; 5(4):242-6. PubMed ID: 7833398 [TBL] [Abstract][Full Text] [Related]
17. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect. Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429 [TBL] [Abstract][Full Text] [Related]
18. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration. Kim BS; Sung HM; You HK; Lee J J Biosci Bioeng; 2014 Oct; 118(4):469-75. PubMed ID: 24768229 [TBL] [Abstract][Full Text] [Related]
19. Sandcastle Worm-Inspired Blood-Resistant Bone Graft Binder Using a Sticky Mussel Protein for Augmented In Vivo Bone Regeneration. Kim HJ; Choi BH; Jun SH; Cha HJ Adv Healthc Mater; 2016 Dec; 5(24):3191-3202. PubMed ID: 27896935 [TBL] [Abstract][Full Text] [Related]
20. Histologic Evaluation of the Bone Regeneration Capacities of Bio-Oss and MinerOss X in Rabbit Calvarial Defects. Esfahanizadeh N; Daneshparvar P; Takzaree N; Rezvan M; Daneshparvar N Int J Periodontics Restorative Dent; 2019; 39(6):e219-e227. PubMed ID: 31613950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]