These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36698297)

  • 1. Designing Hierarchical Soft Network Materials with Developable Lattice Nodes for High Stretchability.
    Liu J; Guo H; Liu H; Lu T
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206099. PubMed ID: 36698297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.
    Ma Q; Cheng H; Jang KI; Luan H; Hwang KC; Rogers JA; Huang Y; Zhang Y
    J Mech Phys Solids; 2016 May; 90():179-202. PubMed ID: 27087704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Imperfection-Insensitive Soft Network Materials for Applications in Stretchable Electronics.
    Liu J; Song H; Zhang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36100-36109. PubMed ID: 31502438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Conformal Design of an Island-Bridge Structure on a Non-Developable Surface for Stretchable Electronics.
    Xiao L; Zhu C; Xiong W; Huang Y; Yin Z
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft three-dimensional network materials with rational bio-mimetic designs.
    Yan D; Chang J; Zhang H; Liu J; Song H; Xue Z; Zhang F; Zhang Y
    Nat Commun; 2020 Mar; 11(1):1180. PubMed ID: 32132524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors.
    Zhang B; Feng Q; Song H; Zhang X; Zhang C; Liu T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8404-8416. PubMed ID: 35112831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.
    Wang S; Huang Y; Rogers JA
    IEEE Trans Compon Packaging Manuf Technol; 2015 Sep; 5(9):1201-1218. PubMed ID: 27668126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overstretch Strategy to Double the Designed Elastic Stretchability of Stretchable Electronics.
    Li J; Wu X; Su Y
    Adv Mater; 2023 Jul; 35(28):e2300340. PubMed ID: 37022130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials.
    Song H; Luo G; Ji Z; Bo R; Xue Z; Yan D; Zhang F; Bai K; Liu J; Cheng X; Pang W; Shen Z; Zhang Y
    Sci Adv; 2022 Mar; 8(11):eabm3785. PubMed ID: 35294232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly-stretchable 3D-architected Mechanical Metamaterials.
    Jiang Y; Wang Q
    Sci Rep; 2016 Sep; 6():34147. PubMed ID: 27667638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Elastomers with Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics.
    Cai M; Nie S; Du Y; Wang C; Song J
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14340-14346. PubMed ID: 30938975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of 'J-shaped' stress-strain behavior in stretchable electronics: a review.
    Ma Y; Feng X; Rogers JA; Huang Y; Zhang Y
    Lab Chip; 2017 May; 17(10):1689-1704. PubMed ID: 28470286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design framework for mechanically tunable soft biomaterial composites enhanced by modified horseshoe lattice structures.
    Wang D; Xiong Y; Zhang B; Zhang YF; Rosen D; Ge Q
    Soft Matter; 2020 Feb; 16(6):1473-1484. PubMed ID: 31971207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s.
    Ming X; Zhang C; Cai J; Zhu H; Zhang Q; Zhu S
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31102-31110. PubMed ID: 34170105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block Copolymer Elastomers for Stretchable Electronics.
    You I; Kong M; Jeong U
    Acc Chem Res; 2019 Jan; 52(1):63-72. PubMed ID: 30586291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One reaction to make highly stretchable or extremely soft silicone elastomers from easily available materials.
    Hu P; Madsen J; Skov AL
    Nat Commun; 2022 Jan; 13(1):370. PubMed ID: 35042874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Module-Assembled Elastomer Showing Large Strain Stiffening Capability and High Stretchability.
    Nakagawa S; Aoki D; Asano Y; Yoshie N
    Adv Mater; 2023 Jun; 35(23):e2301124. PubMed ID: 36929528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible Conductive Polymers with High Conductivity and High Stretchability.
    He H; Zhang L; Guan X; Cheng H; Liu X; Yu S; Wei J; Ouyang J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26185-26193. PubMed ID: 31257845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.