These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36698325)

  • 1. One-Step Synthesis of Biphasic, Cavity-forming Polymer Particles via Dispersion Copolymerization of Styrene and Sulfobetaine Methacrylate.
    Hamilton HSC; Meissner C; Emrick T; Bradley LC
    Macromol Rapid Commun; 2023 Apr; 44(7):e2200873. PubMed ID: 36698325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer.
    Zhang W; Li G; Lin Y; Wang L; Wu S
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1935-1949. PubMed ID: 28799461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.
    Sajjadi S
    J Colloid Interface Sci; 2015 May; 445():174-182. PubMed ID: 25617612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly.
    Bagheri A; Boyer C; Lim M
    Macromol Rapid Commun; 2019 Jan; 40(2):e1800510. PubMed ID: 30176080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface zwitterionization on versatile hydrophobic interfaces via a combined copolymerization/self-assembling process.
    Chou YN; Venault A; Wang YH; Chinnathambi A; Higuchi A; Chang Y
    J Mater Chem B; 2018 Aug; 6(30):4909-4919. PubMed ID: 32255065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl- and amino-functionalized polystyrene particles prepared by miniemulsion polymerization.
    Musyanovych A; Rossmanith R; Tontsch C; Landfester K
    Langmuir; 2007 May; 23(10):5367-76. PubMed ID: 17411078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charged polystyrene nanoparticles: role of ionic comonomers structures.
    Arunbabu D; Jana T
    J Colloid Interface Sci; 2011 Sep; 361(2):534-42. PubMed ID: 21700294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.
    Rahman MM; Chehimi MM; Fessi H; Elaissari A
    J Colloid Interface Sci; 2011 Aug; 360(2):556-64. PubMed ID: 21570083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance.
    Chang Y; Chen S; Yu Q; Zhang Z; Bernards M; Jiang S
    Biomacromolecules; 2007 Jan; 8(1):122-7. PubMed ID: 17206797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization.
    Fielding LA; Tonnar J; Armes SP
    Langmuir; 2011 Sep; 27(17):11129-44. PubMed ID: 21776995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Polypropylene-Composite Particles by Dispersion Polymerization.
    Morimoto R; Suzuki T; Minami H
    Langmuir; 2021 Aug; 37(34):10388-10393. PubMed ID: 34407617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface active properties of polyoxyethylene macromonomers and their role in radical polymerization in disperse systems.
    Capek I
    Adv Colloid Interface Sci; 2000 Dec; 88(3):295-357. PubMed ID: 11130017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology Control via RAFT Emulsion Polymerization-Induced Self-Assembly: Systematic Investigation of Core-Forming Blocks.
    Takashima A; Maeda Y; Sugihara S
    ACS Omega; 2022 Aug; 7(30):26894-26904. PubMed ID: 35936476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycidyl methacrylate-styrene copolymer latex particles for immunologic agglutination tests.
    Maehara T; Eda Y; Mitani K; Matsuzawa S
    Biomaterials; 1990 Mar; 11(2):122-6. PubMed ID: 2317534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.
    Chen CH; Lee WC
    J Chromatogr A; 2001 Jun; 921(1):31-7. PubMed ID: 11461011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(dimethylamino)ethyl methacrylate for use as a surfactant in the miniemulsion polymerization of styrene.
    Ni P; Zhang M; Ma L; Fu S
    Langmuir; 2006 Jul; 22(14):6016-23. PubMed ID: 16800654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization.
    Ziegler A; Landfester K; Musyanovych A
    Colloid Polym Sci; 2009 Nov; 287(11):1261-1271. PubMed ID: 19851469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of novel polyacid-stabilized latexes.
    Yang P; Armes SP
    Langmuir; 2012 Sep; 28(37):13189-200. PubMed ID: 22891891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of "hard-soft" janus particles by seeded dispersion polymerization.
    Skelhon TS; Chen Y; Bon SA
    Langmuir; 2014 Nov; 30(45):13525-32. PubMed ID: 25343641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAFT "grafting-through" approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer.
    Grande CD; Tria MC; Felipe MJ; Zuluaga F; Advincula R
    Eur Phys J E Soft Matter; 2011 Feb; 34(2):15. PubMed ID: 21337014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.