These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 36698680)
1. Numerical approach to quantify depth-dependent blood flow changes in real-time using the diffusion equation with continuous-wave and time-domain diffuse correlation spectroscopy. Helton M; Rajasekhar S; Zerafa S; Vishwanath K; Mycek MA Biomed Opt Express; 2023 Jan; 14(1):367-384. PubMed ID: 36698680 [TBL] [Abstract][Full Text] [Related]
2. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related]
3. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related]
4. Influence of oversimplifying the head anatomy on cerebral blood flow measurements with diffuse correlation spectroscopy. Zhao H; Buckley EM Neurophotonics; 2023 Jan; 10(1):015010. PubMed ID: 37006324 [TBL] [Abstract][Full Text] [Related]
5. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling. Wu MM; Chan ST; Mazumder D; Tamborini D; Stephens KA; Deng B; Farzam P; Chu JY; Franceschini MA; Qu JZ; Carp SA Neurophotonics; 2021 Jan; 8(1):015001. PubMed ID: 33437846 [No Abstract] [Full Text] [Related]
6. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries. Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721 [TBL] [Abstract][Full Text] [Related]
7. Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study. Contini L; Amendola C; Contini D; Torricelli A; Spinelli L; Re R Neurophotonics; 2024 Jul; 11(3):035001. PubMed ID: 38962430 [TBL] [Abstract][Full Text] [Related]
8. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function. Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681 [TBL] [Abstract][Full Text] [Related]
9. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method. Wang Q; Pan M; Zang Z; Li DD J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935 [TBL] [Abstract][Full Text] [Related]
10. Functional Time Domain Diffuse Correlation Spectroscopy. Ozana N; Lue N; Renna M; Robinson MB; Martin A; Zavriyev AI; Carr B; Mazumder D; Blackwell MH; Franceschini MA; Carp SA Front Neurosci; 2022; 16():932119. PubMed ID: 35979338 [TBL] [Abstract][Full Text] [Related]
11. Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults. Verdecchia K; Diop M; Lee A; Morrison LB; Lee TY; St Lawrence K Biomed Opt Express; 2016 Sep; 7(9):3659-3674. PubMed ID: 27699127 [TBL] [Abstract][Full Text] [Related]
12. Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo. Samaei S; Sawosz P; Kacprzak M; Pastuszak Ż; Borycki D; Liebert A Sci Rep; 2021 Jan; 11(1):1817. PubMed ID: 33469124 [TBL] [Abstract][Full Text] [Related]
13. How much do time-domain functional near-infrared spectroscopy (fNIRS) moments improve estimation of brain activity over traditional fNIRS? Ortega-Martinez A; Rogers D; Anderson J; Farzam P; Gao Y; Zimmermann B; Yücel MA; Boas DA Neurophotonics; 2023 Jan; 10(1):013504. PubMed ID: 36284602 [TBL] [Abstract][Full Text] [Related]
14. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS). Robinson MB; Carp SA; Peruch A; Boas DA; Franceschini MA; Sakadžić S Biomed Opt Express; 2020 Jun; 11(6):3071-3090. PubMed ID: 32637242 [TBL] [Abstract][Full Text] [Related]
15. Influence of source-detector separation on diffuse correlation spectroscopy measurements of cerebral blood flow with a multilayered analytical model. Zhao H; Buckley EM Neurophotonics; 2022 Jul; 9(3):035002. PubMed ID: 35874143 [No Abstract] [Full Text] [Related]
16. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media. Li J; Qiu L; Poon CS; Sunar U Biomed Opt Express; 2017 Dec; 8(12):5518-5532. PubMed ID: 29296485 [TBL] [Abstract][Full Text] [Related]
17. Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy. Busch DR; Balu R; Baker WB; Guo W; He L; Diop M; Milej D; Kavuri V; Amendolia O; St Lawrence K; Yodh AG; Kofke WA Neurocrit Care; 2019 Feb; 30(1):72-80. PubMed ID: 30030667 [TBL] [Abstract][Full Text] [Related]
18. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. Diop M; Verdecchia K; Lee TY; St Lawrence K Biomed Opt Express; 2011 Jul; 2(7):2068-81. PubMed ID: 21750781 [TBL] [Abstract][Full Text] [Related]
19. Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results. Parfentyeva V; Colombo L; Lanka P; Pagliazzi M; Brodu A; Noordzij N; Kolarczik M; Dalla Mora A; Re R; Contini D; Torricelli A; Durduran T; Pifferi A Sci Rep; 2023 Jul; 13(1):11982. PubMed ID: 37488188 [TBL] [Abstract][Full Text] [Related]