These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 36698680)

  • 1. Influence of oversimplifying the head anatomy on cerebral blood flow measurements with diffuse correlation spectroscopy.
    Zhao H; Buckley EM
    Neurophotonics; 2023 Jan; 10(1):015010. PubMed ID: 37006324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries.
    Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA
    Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study.
    Contini L; Amendola C; Contini D; Torricelli A; Spinelli L; Re R
    Neurophotonics; 2024 Jul; 11(3):035001. PubMed ID: 38962430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function.
    Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA
    Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
    Wang Q; Pan M; Zang Z; Li DD
    J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of source-detector separation on diffuse correlation spectroscopy measurements of cerebral blood flow with a multilayered analytical model.
    Zhao H; Buckley EM
    Neurophotonics; 2022 Jul; 9(3):035002. PubMed ID: 35874143
    [No Abstract]   [Full Text] [Related]  

  • 7. Time-domain diffuse correlation spectroscopy at large source detector separation for cerebral blood flow recovery.
    Mogharari N; Wojtkiewicz S; Borycki D; Liebert A; Kacprzak M
    Biomed Opt Express; 2024 Jul; 15(7):4330-4344. PubMed ID: 39022555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring human cerebral blood flow and brain function with fiber-based speckle contrast optical spectroscopy system.
    Kim B; Zilpelwar S; Sie EJ; Marsili F; Zimmermann B; Boas DA; Cheng X
    Commun Biol; 2023 Aug; 6(1):844. PubMed ID: 37580382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathlength-selective, interferometric diffuse correlation spectroscopy (PaLS-iDCS).
    Robinson MB; Renna M; Otic N; Franceschini MA; Carp SA
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain.
    Verdecchia K; Diop M; Morrison LB; Lee TY; St Lawrence K
    Biomed Opt Express; 2015 Nov; 6(11):4288-301. PubMed ID: 26600995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a stand-alone DCS system for monitoring absolute cerebral blood flow.
    Khalid M; Milej D; Rajaram A; Abdalmalak A; Morrison L; Diop M; St Lawrence K
    Biomed Opt Express; 2019 Sep; 10(9):4607-4620. PubMed ID: 31565512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast blood flow monitoring in deep tissues with real-time software correlators.
    Wang D; Parthasarathy AB; Baker WB; Gannon K; Kavuri V; Ko T; Schenkel S; Li Z; Li Z; Mullen MT; Detre JA; Yodh AG
    Biomed Opt Express; 2016 Mar; 7(3):776-97. PubMed ID: 27231588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small separation diffuse correlation spectroscopy for measurement of cerebral blood flow in rodents.
    Sathialingam E; Lee SY; Sanders B; Park J; McCracken CE; Bryan L; Buckley EM
    Biomed Opt Express; 2018 Nov; 9(11):5719-5734. PubMed ID: 30460158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compact and cost-effective laser-powered speckle visibility spectroscopy (SVS) device for measuring cerebral blood flow.
    Huang YX; Mahler S; Dickson M; Abedi A; Tyszka JM; Lo YT; Russin J; Liu C; Yang C
    ArXiv; 2024 Feb; ():. PubMed ID: 38351942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A
    Shang Y; Yu G
    Appl Phys Lett; 2014 Sep; 105(13):133702. PubMed ID: 25378708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance comparison of conventional and striation-based beamformers for underwater bearing detection of pulse sources.
    Liu C; Zhou S; Qi Y
    J Acoust Soc Am; 2023 Dec; 154(6):3955-3972. PubMed ID: 38149817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse Correlation Spectroscopy: A Review of Recent Advances in Parallelisation and Depth Discrimination Techniques.
    James E; Munro PRT
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scatterBrains: an open database of human head models and companion optode locations for realistic Monte Carlo photon simulations.
    Wu MM; Horstmeyer R; Carp SA
    J Biomed Opt; 2023 Oct; 28(10):100501. PubMed ID: 37811478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical approach to quantify depth-dependent blood flow changes in real-time using the diffusion equation with continuous-wave and time-domain diffuse correlation spectroscopy.
    Helton M; Rajasekhar S; Zerafa S; Vishwanath K; Mycek MA
    Biomed Opt Express; 2023 Jan; 14(1):367-384. PubMed ID: 36698680
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.