These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36698680)

  • 21. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy.
    Yang J; Ruesch A; Kainerstorfer JM
    Neurophotonics; 2023 Jan; 10(1):015002. PubMed ID: 36699625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue.
    Hallacoglu B; Sassaroli A; Fantini S
    PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time domain functional NIRS imaging for human brain mapping.
    Torricelli A; Contini D; Pifferi A; Caffini M; Re R; Zucchelli L; Spinelli L
    Neuroimage; 2014 Jan; 85 Pt 1():28-50. PubMed ID: 23747285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-domain diffuse correlation spectroscopy at large source detector separation for cerebral blood flow recovery.
    Mogharari N; Wojtkiewicz S; Borycki D; Liebert A; Kacprzak M
    Biomed Opt Express; 2024 Jul; 15(7):4330-4344. PubMed ID: 39022555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical model of blood flow measurement by diffuse correlation spectroscopy.
    Sakadžic S; Boas DA; Carp S
    J Biomed Opt; 2017 Feb; 22(2):27006. PubMed ID: 28241276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow.
    Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA
    Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719
    [No Abstract]   [Full Text] [Related]  

  • 27. The Quantitative Associations Between Near Infrared Spectroscopic Cerebrovascular Metrics and Cerebral Blood Flow: A Scoping Review of the Human and Animal Literature.
    Gomez A; Sainbhi AS; Froese L; Batson C; Slack T; Stein KY; Cordingley DM; Mathieu F; Zeiler FA
    Front Physiol; 2022; 13():934731. PubMed ID: 35910568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring human cerebral blood flow and brain function with fiber-based speckle contrast optical spectroscopy system.
    Kim B; Zilpelwar S; Sie EJ; Marsili F; Zimmermann B; Boas DA; Cheng X
    Commun Biol; 2023 Aug; 6(1):844. PubMed ID: 37580382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathlength-selective, interferometric diffuse correlation spectroscopy (PaLS-iDCS).
    Robinson MB; Renna M; Otic N; Franceschini MA; Carp SA
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media.
    Helton M; Zerafa S; Vishwanath K; Mycek MA
    Sci Rep; 2022 Nov; 12(1):18979. PubMed ID: 36347893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults.
    Kim MN; Durduran T; Frangos S; Edlow BL; Buckley EM; Moss HE; Zhou C; Yu G; Choe R; Maloney-Wilensky E; Wolf RL; Grady MS; Greenberg JH; Levine JM; Yodh AG; Detre JA; Kofke WA
    Neurocrit Care; 2010 Apr; 12(2):173-80. PubMed ID: 19908166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury.
    Baker WB; Balu R; He L; Kavuri VC; Busch DR; Amendolia O; Quattrone F; Frangos S; Maloney-Wilensky E; Abramson K; Mahanna Gabrielli E; Yodh AG; Andrew Kofke W
    J Cereb Blood Flow Metab; 2019 Aug; 39(8):1469-1485. PubMed ID: 31088234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring.
    Carp SA; Dai GP; Boas DA; Franceschini MA; Kim YR
    Biomed Opt Express; 2010 Aug; 1(2):553-565. PubMed ID: 21258489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method.
    Elliott JT; Diop M; Morrison LB; d'Esterre CD; Lee TY; St Lawrence K
    Neuroimage; 2014 Jul; 94():303-311. PubMed ID: 24650601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffuse correlation spectroscopy blood flow monitoring for intraventricular hemorrhage vulnerability in extremely low gestational age newborns.
    Sunwoo J; Zavriyev AI; Kaya K; Martin A; Munster C; Steele T; Cuddyer D; Sheldon Y; Orihuela-Espina F; Herzberg EM; Inder T; Franceschini MA; El-Dib M
    Sci Rep; 2022 Jul; 12(1):12798. PubMed ID: 35896691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy.
    Elliott JT; Diop M; Tichauer KM; Lee TY; St Lawrence K
    J Biomed Opt; 2010; 15(3):037014. PubMed ID: 20615043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between global and cortical cerebral blood flow in patients with head injuries.
    Gopinath SP; Valadka A; Contant CF; Robertson CS
    Neurosurgery; 1999 Jun; 44(6):1273-8; discussion 1278-9. PubMed ID: 10371627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation.
    Newsome MR; Scheibel RS; Chu Z; Hunter JV; Li X; Wilde EA; Lu H; Wang ZJ; Lin X; Steinberg JL; Vasquez AC; Cook L; Levin HS
    Int J Dev Neurosci; 2012 May; 30(3):255-66. PubMed ID: 22120754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using a simulation approach to optimize time-domain diffuse correlation spectroscopy measurement on human head.
    Qiu L; Cheng H; Torricelli A; Li J
    Neurophotonics; 2018 Apr; 5(2):025007. PubMed ID: 29795775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations.
    Colombo L; Pagliazzi M; Sekar SKV; Contini D; Mora AD; Spinelli L; Torricelli A; Durduran T; Pifferi A
    Neurophotonics; 2019 Jul; 6(3):035001. PubMed ID: 31312668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.