These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36698872)

  • 1. Brain-computer interface combined with mental practice and occupational therapy enhances upper limb motor recovery, activities of daily living, and participation in subacute stroke.
    Zanona AF; Piscitelli D; Seixas VM; Scipioni KRDDS; Bastos MSC; de Sá LCK; Monte-Silva K; Bolivar M; Solnik S; De Souza RF
    Front Neurol; 2022; 13():1041978. PubMed ID: 36698872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal Electroencephalography Analysis in Subacute Stroke Patients During Intervention of Brain-Computer Interface With Exoskeleton Feedback.
    Chen S; Cao L; Shu X; Wang H; Ding L; Wang SH; Jia J
    Front Neurosci; 2020; 14():809. PubMed ID: 32922254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraint-induced movement therapy for rehabilitation of arm dysfunction after stroke in adults: an evidence-based analysis.
    Medical Advisory Secretariat, Health Quality Ontario
    Ont Health Technol Assess Ser; 2011; 11(6):1-58. PubMed ID: 23074418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Prognostic Risk Factors Determining Poor Functional Recovery After Comprehensive Rehabilitation Including Motor-Imagery Brain-Computer Interface Training in Stroke Patients: A Prospective Study.
    Wu Q; Ge Y; Ma D; Pang X; Cao Y; Zhang X; Pan Y; Zhang T; Dou W
    Front Neurol; 2021; 12():661816. PubMed ID: 34177767
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial.
    Kim T; Kim S; Lee B
    Occup Ther Int; 2016 Mar; 23(1):39-47. PubMed ID: 26301519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.
    Frolov AA; Mokienko O; Lyukmanov R; Biryukova E; Kotov S; Turbina L; Nadareyshvily G; Bushkova Y
    Front Neurosci; 2017; 11():400. PubMed ID: 28775677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke.
    Cheng N; Phua KS; Lai HS; Tam PK; Tang KY; Cheng KK; Yeow RC; Ang KK; Guan C; Lim JH
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3339-3351. PubMed ID: 32248089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic-assisted therapy with bilateral practice improves task and motor performance in the upper extremities of chronic stroke patients: A randomised controlled trial.
    Hsu HY; Chiu HY; Kuan TS; Tsai CL; Su FC; Kuo LC
    Aust Occup Ther J; 2019 Oct; 66(5):637-647. PubMed ID: 31317553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.
    Milot MH; Spencer SJ; Chan V; Allington JP; Klein J; Chou C; Bobrow JE; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2013 Dec; 10():112. PubMed ID: 24354476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study.
    Prasad G; Herman P; Coyle D; McDonough S; Crosbie J
    J Neuroeng Rehabil; 2010 Dec; 7():60. PubMed ID: 21156054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Predictive Role of Hand Section of Fugl-Meyer Assessment and Motor Activity Log in Action Research Arm Test in People With Stroke.
    Chen P; Liu TW; Tse MMY; Lai CKY; Tsoh J; Ng SSM
    Front Neurol; 2022; 13():926130. PubMed ID: 35873769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis.
    Sun R; Wong WW; Wang J; Tong RK
    Front Hum Neurosci; 2017; 11():444. PubMed ID: 28928649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Adjuvant Mental Practice on Affected Upper Limb Function Following a Stroke: Results of Three-Dimensional Motion Analysis, Fugl-Meyer Assessment of the Upper Extremity and Motor Activity Logs.
    Oh HS; Kim EJ; Kim DY; Kim SJ
    Ann Rehabil Med; 2016 Jun; 40(3):401-11. PubMed ID: 27446776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial.
    Chen YH; Chen CL; Huang YZ; Chen HC; Chen CY; Wu CY; Lin KC
    J Neuroeng Rehabil; 2021 May; 18(1):91. PubMed ID: 34059090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor Rhythm-Brain Computer Interface With Audio-Cue, Motor Observation and Multisensory Feedback for Upper-Limb Stroke Rehabilitation: A Controlled Study.
    Li X; Wang L; Miao S; Yue Z; Tang Z; Su L; Zheng Y; Wu X; Wang S; Wang J; Dou Z
    Front Neurosci; 2022; 16():808830. PubMed ID: 35360158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SENSory re-learning of the UPPer limb after stroke (SENSUPP): study protocol for a pilot randomized controlled trial.
    Carlsson H; Rosén B; Pessah-Rasmussen H; Björkman A; Brogårdh C
    Trials; 2018 Apr; 19(1):229. PubMed ID: 29665842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interface boosts motor imagery practice during stroke recovery.
    Pichiorri F; Morone G; Petti M; Toppi J; Pisotta I; Molinari M; Paolucci S; Inghilleri M; Astolfi L; Cincotti F; Mattia D
    Ann Neurol; 2015 May; 77(5):851-65. PubMed ID: 25712802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional electrical stimulation therapy controlled by a P300-based brain-computer interface, as a therapeutic alternative for upper limb motor function recovery in chronic post-stroke patients. A non-randomized pilot study.
    Ramirez-Nava AG; Mercado-Gutierrez JA; Quinzaños-Fresnedo J; Toledo-Peral C; Vega-Martinez G; Gutierrez MI; Pacheco-Gallegos MDR; Hernández-Arenas C; Gutiérrez-Martínez J
    Front Neurol; 2023; 14():1221160. PubMed ID: 37669261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rehabilitation of the upper arm early after stroke: Video games versus conventional rehabilitation. A randomized controlled trial.
    Laffont I; Froger J; Jourdan C; Bakhti K; van Dokkum LEH; Gouaich A; Bonnin HY; Armingaud P; Jaussent A; Picot MC; Le Bars E; Dupeyron A; Arquizan C; Gelis A; Mottet D
    Ann Phys Rehabil Med; 2020 May; 63(3):173-180. PubMed ID: 31830535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.