BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36699010)

  • 1. Somitic mesoderm morphogenesis is necessary for neural tube closure during Xenopus development.
    Christodoulou N; Skourides PA
    Front Cell Dev Biol; 2022; 10():1091629. PubMed ID: 36699010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure.
    Christodoulou N; Skourides PA
    Development; 2022 Jul; 149(13):. PubMed ID: 35662330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
    Inoue Y; Suzuki M; Watanabe T; Yasue N; Tateo I; Adachi T; Ueno N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1733-1746. PubMed ID: 27193152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction.
    Sulistomo HW; Nemoto T; Yanagita T; Takeya R
    J Biol Chem; 2019 Feb; 294(8):2924-2934. PubMed ID: 30573686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential cellular stiffness across tissues that contribute to Xenopus neural tube closure.
    Suzuki M; Yasue N; Ueno N
    Dev Growth Differ; 2024 Jun; ():. PubMed ID: 38925637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure.
    Haigo SL; Hildebrand JD; Harland RM; Wallingford JB
    Curr Biol; 2003 Dec; 13(24):2125-37. PubMed ID: 14680628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.
    Prager A; Hagenlocher C; Ott T; Schambony A; Feistel K
    Dev Biol; 2017 Oct; 430(1):188-201. PubMed ID: 28778799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure.
    Lesko AC; Keller R; Chen P; Sutherland A
    Dev Biol; 2021 Oct; 478():59-75. PubMed ID: 34029538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse.
    Shum AS; Copp AJ
    Anat Embryol (Berl); 1996 Jul; 194(1):65-73. PubMed ID: 8800424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization.
    Suzuki M; Hara Y; Takagi C; Yamamoto TS; Ueno N
    Development; 2010 Jul; 137(14):2329-39. PubMed ID: 20534674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure.
    Itoh K; Ossipova O; Sokol SY
    J Cell Sci; 2014 Jun; 127(Pt 11):2542-53. PubMed ID: 24681784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folate receptor 1 is necessary for neural plate cell apical constriction during
    Balashova OA; Visina O; Borodinsky LN
    Development; 2017 Apr; 144(8):1518-1530. PubMed ID: 28255006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB.
    Rolo A; Skoglund P; Keller R
    Dev Biol; 2009 Mar; 327(2):327-38. PubMed ID: 19121300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural tube closure: cellular, molecular and biomechanical mechanisms.
    Nikolopoulou E; Galea GL; Rolo A; Greene ND; Copp AJ
    Development; 2017 Feb; 144(4):552-566. PubMed ID: 28196803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabled (Xena) regulates neural plate morphogenesis, apical constriction, and cellular adhesion required for neural tube closure in Xenopus.
    Roffers-Agarwal J; Xanthos JB; Kragtorp KA; Miller JR
    Dev Biol; 2008 Feb; 314(2):393-403. PubMed ID: 18201691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis.
    Shook DR; Majer C; Keller R
    Dev Biol; 2004 Jun; 270(1):163-85. PubMed ID: 15136148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assays for Apical Constriction Using the Xenopus Model.
    Baldwin AT; Popov IK; Wallingford JB; Chang C
    Methods Mol Biol; 2022; 2438():415-437. PubMed ID: 35147955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibronectin is a smart adhesive that both influences and responds to the mechanics of early spinal column development.
    Guillon E; Das D; Jülich D; Hassan AR; Geller H; Holley S
    Elife; 2020 Mar; 9():. PubMed ID: 32228864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.
    Anderson MJ; Schimmang T; Lewandoski M
    PLoS Genet; 2016 May; 12(5):e1006018. PubMed ID: 27144312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching cell morphogenesis during late neurulation and mild neural tube defects.
    Korzh V
    Dev Growth Differ; 2014 Aug; 56(6):425-33. PubMed ID: 24888446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.