These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36699267)

  • 1. Machine Learning approach for TWA detection relying on ensemble data design.
    Fernández-Calvillo MG; Goya-Esteban R; Cruz-Roldán F; Hernández-Madrid A; Blanco-Velasco M
    Heliyon; 2023 Jan; 9(1):e12947. PubMed ID: 36699267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning based detection of T-wave alternans in real ambulatory conditions.
    Pascual-Sánchez L; Goya-Esteban R; Cruz-Roldán F; Hernández-Madrid A; Blanco-Velasco M
    Comput Methods Programs Biomed; 2024 Jun; 249():108157. PubMed ID: 38582037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of a T-wave alternans detection method based on empirical mode decomposition.
    Blanco-Velasco M; Goya-Esteban R; Cruz-Roldán F; García-Alberola A; Rojo-Álvarez JL
    Comput Methods Programs Biomed; 2017 Jul; 145():147-155. PubMed ID: 28552120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of noise on T-wave alternans measurement in ambulatory ECGs using modified moving average versus spectral method.
    Selvaraj RJ; Chauhan VS
    Pacing Clin Electrophysiol; 2009 May; 32(5):632-41. PubMed ID: 19422585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization.
    Ghoraani B; Krishnan S; Selvaraj RJ; Chauhan VS
    Med Eng Phys; 2011 Jul; 33(6):700-11. PubMed ID: 21333581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beat-to-beat T-wave alternans detection using the Ensemble Empirical Mode Decomposition method.
    Hasan MA; Chauhan VS; Krishnan S
    Comput Biol Med; 2016 Oct; 77():1-8. PubMed ID: 27489981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of over-reading ambulatory ECG-based microvolt T-wave alternans to eliminate three main sources of measurement error.
    Takasugi N; Matsuno H; Takasugi M; Shinoda K; Watanabe T; Ito H; Okura H; Verrier RL
    Ann Noninvasive Electrocardiol; 2019 Sep; 24(5):e12670. PubMed ID: 31241245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonparametric surrogate-based test of significance for T-wave alternans detection.
    Nemati S; Abdala O; Monasterio V; Yim-Yeh S; Malhotra A; Clifford GD
    IEEE Trans Biomed Eng; 2011 May; 58(5):1356-64. PubMed ID: 20409986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting arrhythmia-free survival using spectral and modified-moving average analyses of T-wave alternans.
    Cox V; Patel M; Kim J; Liu T; Sivaraman G; Narayan SM
    Pacing Clin Electrophysiol; 2007 Mar; 30(3):352-8. PubMed ID: 17367354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk Stratification for Ventricular Tachyarrhythmias by Ambulatory Electrocardiogram-Based Frequency Domain T-Wave Alternans.
    Kawasaki M; Yamada T; Morita T; Furukawa Y; Tamaki S; Iwasaki Y; Kikuchi A; Kondo T; Takahashi S; Kawai T; Okuyama Y; Sakata Y; Fukunami M
    Pacing Clin Electrophysiol; 2015 Dec; 38(12):1425-33. PubMed ID: 26351097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial infarction detection method based on the continuous T-wave area feature and multi-lead-fusion deep features.
    Jiang M; Bian F; Zhang J; Huang T; Xia L; Chu Y; Wang Z; Jiang J
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38697203
    [No Abstract]   [Full Text] [Related]  

  • 12. Microvolt T-wave Alternans: Where Are We Now?
    Aro AL; Kenttä TV; Huikuri HV
    Arrhythm Electrophysiol Rev; 2016 May; 5(1):37-40. PubMed ID: 27403292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the estimation of T-wave alternans using the spectral fast fourier transform method.
    Armoundas AA; Mela T; Merchant FM
    Heart Rhythm; 2012 Mar; 9(3):449-56. PubMed ID: 22001706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined algorithm for T-wave alternans qualitative detection and quantitative measurement.
    Wan X; Yan K; Luo D; Zeng Y
    J Cardiothorac Surg; 2013 Jan; 8():7. PubMed ID: 23311454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of methods for automatic detection and quantification of microvolt T-wave alternans.
    Burattini L; Bini S; Burattini R
    Med Eng Phys; 2009 Dec; 31(10):1290-8. PubMed ID: 19758833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for determining the phase of T-wave alternans: diagnostic and therapeutic implications.
    Sayadi O; Merchant FM; Puppala D; Mela T; Singh JP; Heist EK; Owen C; Armoundas AA
    Circ Arrhythm Electrophysiol; 2013 Aug; 6(4):818-26. PubMed ID: 23884196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of T-wave alternans using the dominant T-wave paradigm.
    Mainardi L; Sassi R
    J Electrocardiol; 2011; 44(2):119-25. PubMed ID: 21353060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of noise in long-term ECG monitoring with machine learning based on clinical criteria.
    Holgado-Cuadrado R; Plaza-Seco C; Lovisolo L; Blanco-Velasco M
    Med Biol Eng Comput; 2023 Sep; 61(9):2227-2240. PubMed ID: 37010711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Open-Source Standard T-Wave Alternans Detector for Benchmarking.
    Khaustov A; Nemati S; Clifford G
    Comput Cardiol; 2008 Sep; 2008():509-512. PubMed ID: 20798786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical value of T-wave alternans derived from Holter monitoring.
    Lewek J; Ptaszynski P; Klingenheben T; Cygankiewicz I
    Europace; 2017 Apr; 19(4):529-534. PubMed ID: 28339589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.