These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36699413)

  • 1. Sparcle: assigning transcripts to cells in multiplexed images.
    Prabhakaran S
    Bioinform Adv; 2022; 2(1):vbac048. PubMed ID: 36699413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang X; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    Cell Syst; 2024 May; 15(5):475-482.e6. PubMed ID: 38754367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian model for single cell transcript expression analysis on MERFISH data.
    Köster J; Brown M; Liu XS
    Bioinformatics; 2019 Mar; 35(6):995-1001. PubMed ID: 30875429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering spatial transcriptomics data.
    Teng H; Yuan Y; Bar-Joseph Z
    Bioinformatics; 2022 Jan; 38(4):997-1004. PubMed ID: 34623423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell segmentation in imaging-based spatial transcriptomics.
    Petukhov V; Xu RJ; Soldatov RA; Cadinu P; Khodosevich K; Moffitt JR; Kharchenko PV
    Nat Biotechnol; 2022 Mar; 40(3):345-354. PubMed ID: 34650268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dNEMO: a tool for quantification of mRNA and punctate structures in time-lapse images of single cells.
    Kowalczyk GJ; Cruz JA; Guo Y; Zhang Q; Sauerwald N; Lee REC
    Bioinformatics; 2021 May; 37(5):677-683. PubMed ID: 33051642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performant web-based interactive visualization tool for spatially-resolved transcriptomics experiments.
    Sriworarat C; Nguyen A; Eagles NJ; Collado-Torres L; Martinowich K; Maynard KR; Hicks SC
    bioRxiv; 2023 Feb; ():. PubMed ID: 36747726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performant web-based interactive visualization tool for spatially-resolved transcriptomics experiments.
    Sriworarat C; Nguyen A; Eagles NJ; Collado-Torres L; Martinowich K; Maynard KR; Hicks SC
    Biol Imaging; 2023; 3():e15. PubMed ID: 38487694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy.
    Wang G; Moffitt JR; Zhuang X
    Sci Rep; 2018 Mar; 8(1):4847. PubMed ID: 29555914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization-based decoding of Imaging Spatial Transcriptomics data.
    Bryan JP; Binan L; McCann C; Eldar YC; Farhi SL; Cleary B
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37267161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular spatially resolved gene neighborhood networks in single cells.
    Fang Z; Ford AJ; Hu T; Zhang N; Mantalaris A; Coskun AF
    Cell Rep Methods; 2023 May; 3(5):100476. PubMed ID: 37323566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images.
    Harris CR; McKinley ET; Roland JT; Liu Q; Shrubsole MJ; Lau KS; Coffey RJ; Wrobel J; Vandekar SN
    Bioinformatics; 2022 Mar; 38(6):1700-1707. PubMed ID: 34983062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang XJ; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    bioRxiv; 2024 Feb; ():. PubMed ID: 37732188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving gene quantification by adjustable spot-image restoration.
    Daskalakis A; Cavouras D; Bougioukos P; Kostopoulos S; Glotsos D; Kalatzis I; Kagadis GC; Argyropoulos C; Nikiforidis G
    Bioinformatics; 2007 Sep; 23(17):2265-72. PubMed ID: 17599935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing.
    Moffitt JR; Hao J; Bambah-Mukku D; Lu T; Dulac C; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14456-14461. PubMed ID: 27911841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.