These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3669945)

  • 1. Molecular masking and unmasking of the paramagnetic effect of iron on the proton spin-lattice (T1) relaxation time in blood and blood clots.
    Finnie M; Fullerton GD; Cameron IL
    Magn Reson Imaging; 1986; 4(4):305-10. PubMed ID: 3669945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hemolysis and clotting on proton relaxation times of blood.
    Nummi P; Alanen A; Näntö V; Kormano M
    Acta Radiol Diagn (Stockh); 1986; 27(2):225-30. PubMed ID: 2424275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-lattice relaxation rates in Fe(III)-doped human serum measured by magnetic resonance imaging.
    Yilmaz A; Ciraolo L; Renzi R; Longo G; Franciolini F; Bianchi MA
    Clin Phys Physiol Meas; 1989 Nov; 10(4):361-4. PubMed ID: 2483680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of varying fibrinogen and hematocrit concentrations on magnetic resonance relaxation times of thrombus.
    Stuhlmuller JE; Olson JD; Burns TL; Skorton DJ
    Invest Radiol; 1992 May; 27(5):341-5. PubMed ID: 1582815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between red blood cell and platelet components of blood clots by MR microscopy.
    Vidmar J; Sersa I; Kralj E; Tratar G; Blinc A
    Eur Biophys J; 2008 Sep; 37(7):1235-40. PubMed ID: 18449533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of transition metal ions on NMR proton T1 relaxation times of serum, blood, and red cells.
    Yilmaz A; Yurdakoç M; Işik B
    Biol Trace Elem Res; 1999 Feb; 67(2):187-93. PubMed ID: 10073424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance spectroscopy: reinvestigation of carbon-13 spin-lattice relaxation time measurements of amino acids.
    Pearson H; Gust D; Armitage IM; Huber H; Roberts JD; Stark RE; Vold RR; Vold RL
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1599-601. PubMed ID: 165516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence.
    Zipp A; James TL; Kuntz ID; Shohet SB
    Biochim Biophys Acta; 1976 Apr; 428(2):291-303. PubMed ID: 1276160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of clot formation and retraction on spin-echo MR images of blood: an in vitro study.
    Hayman LA; Taber KH; Ford JJ; Saleem A; Gurgun M; Mohamed S; Bryan RN
    AJNR Am J Neuroradiol; 1989; 10(6):1155-8. PubMed ID: 2556906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro study of magnetization transfer and relaxation rates of hematoma.
    Gomori JM; Grossman RI; Asakura T; Schnall MD; Atlas S; Holland G; Mittl RL
    AJNR Am J Neuroradiol; 1993; 14(4):871-80. PubMed ID: 8352159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.
    Grgac K; Li W; Huang A; Qin Q; van Zijl PC
    Magn Reson Imaging; 2017 May; 38():234-249. PubMed ID: 27993533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human malignant melanomas with varying degrees of melanin content in nude mice: MR imaging, histopathology, and electron paramagnetic resonance.
    Atlas SW; Braffman BH; LoBrutto R; Elder DE; Herlyn D
    J Comput Assist Tomogr; 1990; 14(4):547-54. PubMed ID: 2164537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of paramagnetic ions and pH on proton NMR relaxation of biologic fluids.
    Barnhart JL; Berk RN
    Invest Radiol; 1986 Feb; 21(2):132-6. PubMed ID: 3007390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance characterization of blood coagulation in vitro. Effect of platelet depletion.
    Stuhlmuller JE; Scholz TD; Olson JD; Burns TL; Skorton DJ
    Invest Radiol; 1991 Apr; 26(4):343-7. PubMed ID: 2032822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AUR memorial award--1988. MRI enhancement of perfused tissues using chromium labeled red blood cells as an intravascular contrast agent.
    Eisenberg AD; Conturo TE; Price RR; Holburn GE; Partain CL; James AE
    Invest Radiol; 1989 Oct; 24(10):742-53. PubMed ID: 2793387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of stationary blood: a review.
    Brooks RA; Di Chiro G
    Med Phys; 1987; 14(6):903-13. PubMed ID: 3696078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of dependence of spin-lattice relaxation rate in serum upon concentration of added iron by magnetic resonance imaging.
    Yilmaz A; Bucciolini M; Longo G; Franciolini F; Ciraolo L; Renzi R
    Clin Phys Physiol Meas; 1990 Nov; 11(4):343-9. PubMed ID: 1703937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite.
    Gillis P; Koenig SH
    Magn Reson Med; 1987 Oct; 5(4):323-45. PubMed ID: 2824967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of contrast enhancement in magnetic resonance imaging.
    Lee DH
    Can Assoc Radiol J; 1991 Feb; 42(1):6-12. PubMed ID: 2001531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Society for Pediatric Radiology John Caffey Award. MR appearance of blood and blood products: an in vitro study.
    Cohen MD; McGuire W; Cory DA; Smith JA
    AJR Am J Roentgenol; 1986 Jun; 146(6):1293-7. PubMed ID: 3486571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.