These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36699619)

  • 1. Spectral Analysis of High Order Continuous FEM for Hyperbolic PDEs on Triangular Meshes: Influence of Approximation, Stabilization, and Time-Stepping.
    Michel S; Torlo D; Ricchiuto M; Abgrall R
    J Sci Comput; 2023; 94(3):49. PubMed ID: 36699619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From
    Bolis A; Cantwell CD; Kirby RM; Sherwin SJ
    Int J Numer Methods Fluids; 2014 Jul; 75(8):591-607. PubMed ID: 25892840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods.
    Rajaraman P; Heys JJ
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):103-16. PubMed ID: 23982945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space.
    Bause M; Radu FA; Köcher U
    Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I: Linear Problems.
    Abgrall R; Nordström J; Öffner P; Tokareva S
    J Sci Comput; 2020; 85(2):43. PubMed ID: 33184528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure aware Runge-Kutta time stepping for spacetime tents.
    Gopalakrishnan J; Schöberl J; Wintersteiger C
    SN Partial Differ Equ Appl; 2020; 1(4):19. PubMed ID: 32879914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.
    Xia K; Wei GW
    Comput Math Appl; 2014 Oct; 68(7):719-745. PubMed ID: 25309038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS.
    Mu L; Wang J; Wei G; Ye X; Zhao S
    J Comput Phys; 2013 Oct; 250():106-125. PubMed ID: 24072935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Runge-Kutta time semidiscretizations of semilinear PDEs with non-smooth data.
    Wulff C; Evans C
    Numer Math (Heidelb); 2016; 134(2):413-440. PubMed ID: 28615741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of Discontinuous Galerkin Spectral Element Schemes for Wave Propagation when the Coefficient Matrices have Jumps.
    Kopriva DA; Gassner GJ; Nordström J
    J Sci Comput; 2021; 88(1):3. PubMed ID: 34776602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Combination of Residual Distribution and the Active Flux Formulations or a New Class of Schemes That Can Combine Several Writings of the Same Hyperbolic Problem: Application to the 1D Euler Equations.
    Abgrall R
    Commun Appl Math Comput; 2023; 5(1):370-402. PubMed ID: 36816474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIB Galerkin method for elliptic interface problems.
    Xia K; Zhan M; Wei GW
    J Comput Appl Math; 2014 Dec; 272():195-220. PubMed ID: 24999292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of streamline upwind Petrov-Galerkin angular stabilization of the linear Boltzmann transport equation with magnetic fields.
    Swan A; Yang R; Zelyak O; St-Aubin J
    Biomed Phys Eng Express; 2020 Dec; 7(1):. PubMed ID: 34037544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite volume schemes for the numerical simulation of tracer transport in plants.
    Bühler J; Huber G; von Lieres E
    Math Biosci; 2017 Jun; 288():14-20. PubMed ID: 28216295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Higher-Order Galerkin Time Discretization and Numerical Comparisons for Two Models of HIV Infection.
    Attaullah ; Yüzbaşı Ş; Alyobi S; Yassen MF; Weera W
    Comput Math Methods Med; 2022; 2022():3599827. PubMed ID: 36404912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
    An N; Yu X; Chen H; Huang C; Liu Z
    J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthonormal Bernstein Galerkin technique for computations of higher order eigenvalue problems.
    Farzana H; Bhowmik SK; Islam MS
    MethodsX; 2023; 10():102006. PubMed ID: 36684474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.
    Krishnamoorthi S; Sarkar M; Klug WS
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1243-66. PubMed ID: 23873868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling.
    Banks HT; Birch MJ; Brewin MP; Greenwald SE; Hu S; Kenz ZR; Kruse C; Maischak M; Shaw S; Whiteman JR
    Int J Numer Methods Eng; 2014 Apr; 98(2):131-156. PubMed ID: 25834284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.