BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 36699635)

  • 1. Gut-on-a-chip for disease models.
    Xian C; Zhang J; Zhao S; Li XG
    J Tissue Eng; 2023; 14():20417314221149882. PubMed ID: 36699635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut-on-chip: Recreating human intestine in vitro.
    Xiang Y; Wen H; Yu Y; Li M; Fu X; Huang S
    J Tissue Eng; 2020; 11():2041731420965318. PubMed ID: 33282173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Organ-on-a-Chip Models of Human Intestine.
    Bein A; Shin W; Jalili-Firoozinezhad S; Park MH; Sontheimer-Phelps A; Tovaglieri A; Chalkiadaki A; Kim HJ; Ingber DE
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):659-668. PubMed ID: 29713674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut-on-a-Chip Models: Current and Future Perspectives for Host-Microbial Interactions Research.
    Morelli M; Kurek D; Ng CP; Queiroz K
    Biomedicines; 2023 Feb; 11(2):. PubMed ID: 36831155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies.
    Donkers JM; van der Vaart JI; van de Steeg E
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan Oligosaccharides Regulate the Occurrence and Development of Enteritis in a Human Gut-On-a-Chip.
    Jing B; Xia K; Zhang C; Jiao S; Zhu L; Wei J; Wang ZA; Chen N; Tu P; Li J; Du Y
    Front Cell Dev Biol; 2022; 10():877892. PubMed ID: 35557948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The translational roadmap of the gut models, focusing on gut-on-chip.
    Malaguarnera G; Graute M; Homs Corbera A
    Open Res Eur; 2021; 1():62. PubMed ID: 37645178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases.
    Wang Y; Wang P; Qin J
    Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip.
    Jeon MS; Choi YY; Mo SJ; Ha JH; Lee YS; Lee HU; Park SD; Shim JJ; Lee JL; Chung BG
    Nano Converg; 2022 Feb; 9(1):8. PubMed ID: 35133522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Gut-On-A-Chip Model for High Throughput Disease Modeling and Drug Discovery.
    Beaurivage C; Naumovska E; Chang YX; Elstak ED; Nicolas A; Wouters H; van Moolenbroek G; Lanz HL; Trietsch SJ; Joore J; Vulto P; Janssen RAJ; Erdmann KS; Stallen J; Kurek D
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gut-on-a-chip models for dissecting the gut microbiology and physiology.
    Valiei A; Aminian-Dehkordi J; Mofrad MRK
    APL Bioeng; 2023 Mar; 7(1):011502. PubMed ID: 36875738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality.
    Kulkarni G; Apostolou A; Ewart L; Lucchesi C; Kasendra M
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models.
    Kim R; Sung JH
    Biomicrofluidics; 2024 May; 18(3):031507. PubMed ID: 38947281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Gut-on-a-Chip: Fundamentals and Challenges.
    Thomas DP; Zhang J; Nguyen NT; Ta HT
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Microphysiological Models of Intestinal Tissue and Gut Microbiome.
    Steinway SN; Saleh J; Koo BK; Delacour D; Kim DH
    Front Bioeng Biotechnol; 2020; 8():725. PubMed ID: 32850690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection.
    Grassart A; Malardé V; Gobaa S; Sartori-Rupp A; Kerns J; Karalis K; Marteyn B; Sansonetti P; Sauvonnet N
    Cell Host Microbe; 2019 Sep; 26(3):435-444.e4. PubMed ID: 31492657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip.
    Shin W; Kim HJ
    Methods Cell Biol; 2018; 146():135-148. PubMed ID: 30037458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip.
    Rahman S; Ghiboub M; Donkers JM; van de Steeg E; van Tol EAF; Hakvoort TBM; de Jonge WJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Microfabrication of 2D and 3D Biomimetic Gut-on-a-Chip.
    Jang Y; Jung J; Oh J
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biomimetic Human Gut-on-a-Chip for Modeling Drug Metabolism in Intestine.
    Guo Y; Li Z; Su W; Wang L; Zhu Y; Qin J
    Artif Organs; 2018 Dec; 42(12):1196-1205. PubMed ID: 30256442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.