These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 36699913)
1. Automation of classification of sleep stages and estimation of sleep efficiency using actigraphy. Kim H; Kim D; Oh J Front Public Health; 2022; 10():1092222. PubMed ID: 36699913 [TBL] [Abstract][Full Text] [Related]
2. Automated sleep stage classification based on tracheal body sound and actigraphy. Kalkbrenner C; Brucher R; Kesztyüs T; Eichenlaub M; Rottbauer W; Scharnbeck D Ger Med Sci; 2019; 17():Doc02. PubMed ID: 30996721 [TBL] [Abstract][Full Text] [Related]
3. Performance comparison between wrist and chest actigraphy in combination with heart rate variability for sleep classification. Aktaruzzaman M; Rivolta MW; Karmacharya R; Scarabottolo N; Pugnetti L; Garegnani M; Bovi G; Scalera G; Ferrarin M; Sassi R Comput Biol Med; 2017 Oct; 89():212-221. PubMed ID: 28841459 [TBL] [Abstract][Full Text] [Related]
4. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults. Fonseca P; Weysen T; Goelema MS; Møst EIS; Radha M; Lunsingh Scheurleer C; van den Heuvel L; Aarts RM Sleep; 2017 Jul; 40(7):. PubMed ID: 28838130 [TBL] [Abstract][Full Text] [Related]
5. Deep Neural Network Sleep Scoring Using Combined Motion and Heart Rate Variability Data. Haghayegh S; Khoshnevis S; Smolensky MH; Diller KR; Castriotta RJ Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374527 [No Abstract] [Full Text] [Related]
6. AI-Driven sleep staging from actigraphy and heart rate. Song TA; Chowdhury SR; Malekzadeh M; Harrison S; Hoge TB; Redline S; Stone KL; Saxena R; Purcell SM; Dutta J PLoS One; 2023; 18(5):e0285703. PubMed ID: 37195925 [TBL] [Abstract][Full Text] [Related]
7. A validation study of Fitbit Charge 2™ compared with polysomnography in adults. de Zambotti M; Goldstone A; Claudatos S; Colrain IM; Baker FC Chronobiol Int; 2018 Apr; 35(4):465-476. PubMed ID: 29235907 [TBL] [Abstract][Full Text] [Related]
8. Proof of principle study: diagnostic accuracy of a novel algorithm for the estimation of sleep stages and disease severity in patients with sleep-disordered breathing based on actigraphy and respiratory inductance plethysmography. Dietz-Terjung S; Martin AR; Finnsson E; Ágústsson JS; Helgason S; Helgadóttir H; Welsner M; Taube C; Weinreich G; Schöbel C Sleep Breath; 2021 Dec; 25(4):1945-1952. PubMed ID: 33594617 [TBL] [Abstract][Full Text] [Related]
9. Three Contactless Sleep Technologies Compared With Actigraphy and Polysomnography in a Heterogeneous Group of Older Men and Women in a Model of Mild Sleep Disturbance: Sleep Laboratory Study. G Ravindran KK; Della Monica C; Atzori G; Lambert D; Hassanin H; Revell V; Dijk DJ JMIR Mhealth Uhealth; 2023 Oct; 11():e46338. PubMed ID: 37878360 [TBL] [Abstract][Full Text] [Related]
10. Factors that may influence the classification of sleep-wake by wrist actigraphy: the MrOS Sleep Study. Blackwell T; Ancoli-Israel S; Redline S; Stone KL; J Clin Sleep Med; 2011 Aug; 7(4):357-67. PubMed ID: 21897772 [TBL] [Abstract][Full Text] [Related]
11. Heart Rate Variability and Firstbeat Method for Detecting Sleep Stages in Healthy Young Adults: Feasibility Study. Kuula L; Pesonen AK JMIR Mhealth Uhealth; 2021 Feb; 9(2):e24704. PubMed ID: 33533726 [TBL] [Abstract][Full Text] [Related]
12. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors. Kagawa M; Suzumura K; Matsui T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4913-4916. PubMed ID: 28325016 [TBL] [Abstract][Full Text] [Related]
13. An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects. Sharma M; Yadav A; Tiwari J; Karabatak M; Yildirim O; Acharya UR Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742426 [TBL] [Abstract][Full Text] [Related]
14. Automatic sleep-stage classification of heart rate and actigraphy data using deep and transfer learning approaches. Ma YJX; Zschocke J; Glos M; Kluge M; Penzel T; Kantelhardt JW; Bartsch RP Comput Biol Med; 2023 Sep; 163():107193. PubMed ID: 37421734 [TBL] [Abstract][Full Text] [Related]
15. Novel and noninvasive methods for in-home sleep measurement and subsequent state coding in 12-month-old infants. Horger MN Infant Behav Dev; 2022 Nov; 69():101775. PubMed ID: 36126380 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based sleep stage classification with cardiorespiratory and body movement activities in individuals with suspected sleep disorders. Morokuma S; Hayashi T; Kanegae M; Mizukami Y; Asano S; Kimura I; Tateizumi Y; Ueno H; Ikeda S; Niizeki K Sci Rep; 2023 Oct; 13(1):17730. PubMed ID: 37853134 [TBL] [Abstract][Full Text] [Related]
17. Machine-learning-derived sleep-wake staging from around-the-ear electroencephalogram outperforms manual scoring and actigraphy. Mikkelsen KB; Ebajemito JK; Bonmati-Carrion MA; Santhi N; Revell VL; Atzori G; Della Monica C; Debener S; Dijk DJ; Sterr A; de Vos M J Sleep Res; 2019 Apr; 28(2):e12786. PubMed ID: 30421469 [TBL] [Abstract][Full Text] [Related]
18. Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults. Regalia G; Gerboni G; Migliorini M; Lai M; Pham J; Puri N; Pavlova MK; Picard RW; Sarkis RA; Onorati F Chronobiol Int; 2021 Mar; 38(3):400-414. PubMed ID: 33213222 [TBL] [Abstract][Full Text] [Related]
19. A comparison of agreement between actigraphy and polysomnography for assessing sleep during posttraumatic amnesia. Fedele B; McKenzie D; Williams G; Giles R; Olver J J Clin Sleep Med; 2022 Nov; 18(11):2605-2616. PubMed ID: 35912692 [TBL] [Abstract][Full Text] [Related]
20. Performance of Fitbit Charge 3 against polysomnography in measuring sleep in adolescent boys and girls. Menghini L; Yuksel D; Goldstone A; Baker FC; de Zambotti M Chronobiol Int; 2021 Jul; 38(7):1010-1022. PubMed ID: 33792456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]