These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36700132)

  • 1. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation.
    Hsu KT; Guan S; Chitnis PV
    Photoacoustics; 2023 Feb; 29():100452. PubMed ID: 36700132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learned Parameters and Increment for Iterative Photoacoustic Image Reconstruction via Deep Learning.
    Li Z; Lan H; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2989-2992. PubMed ID: 34891873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Deep Learning Frameworks for Photoacoustic Tomography Image Reconstruction.
    Hsu KT; Guan S; Chitnis PV
    Photoacoustics; 2021 Sep; 23():100271. PubMed ID: 34094851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learned regularization for image reconstruction in sparse-view photoacoustic tomography.
    Wang T; He M; Shen K; Liu W; Tian C
    Biomed Opt Express; 2022 Nov; 13(11):5721-5737. PubMed ID: 36733736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for photoacoustic tomography from sparse data.
    Antholzer S; Haltmeier M; Schwab J
    Inverse Probl Sci Eng; 2019; 27(7):987-1005. PubMed ID: 31057659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized deep iterative reconstruction for sparse-view CT imaging.
    Su T; Cui Z; Yang J; Zhang Y; Liu J; Zhu J; Gao X; Fang S; Zheng H; Ge Y; Liang D
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34847538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Scale Learned Iterative Reconstruction.
    Hauptmann A; Adler J; Arridge S; Öktem O
    IEEE Trans Comput Imaging; 2020; 6():843-856. PubMed ID: 33644260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation.
    Boink YE; Manohar S; Brune C
    IEEE Trans Med Imaging; 2020 Jan; 39(1):129-139. PubMed ID: 31180846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning.
    Guan S; Khan AA; Sikdar S; Chitnis PV
    Sci Rep; 2020 May; 10(1):8510. PubMed ID: 32444649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration.
    Song X; Wang G; Zhong W; Guo K; Li Z; Liu X; Dong J; Liu Q
    Photoacoustics; 2023 Oct; 33():100558. PubMed ID: 38021282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-F-BRCD-09: Total Variation (TV) Based Fast Convergent Iterative CBCT Reconstruction with GPU Acceleration.
    Xu Q; Yang D; Tan J; Anastasio M
    Med Phys; 2012 Jun; 39(6Part20):3857. PubMed ID: 28517520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
    Wu D; Kim K; Li Q
    Med Phys; 2021 Dec; 48(12):7657-7672. PubMed ID: 34791655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction.
    Qiu W; Li D; Jin X; Liu F; Sun B
    Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse-view and limited-angle CT reconstruction with untrained networks and deep image prior.
    Shu Z; Entezari A
    Comput Methods Programs Biomed; 2022 Nov; 226():107167. PubMed ID: 36272306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.