These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36700246)

  • 1. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks.
    Wang X; Wang Y; Qi C; Qiao S; Yang S; Wang R; Jin H; Zhang J
    Technol Cancer Res Treat; 2023; 22():15330338221150069. PubMed ID: 36700246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Metastatic Tumor Cells in the Bone Marrow Aspirate Smears by Artificial Intelligence (AI)-Based
    Chen P; Chen Xu R; Chen N; Zhang L; Zhang L; Zhu J; Pan B; Wang B; Guo W
    Front Oncol; 2021; 11():742395. PubMed ID: 34646779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence.
    Fu X; Fu M; Li Q; Peng X; Lu J; Fang F; Chen M
    Acta Cytol; 2020; 64(6):588-596. PubMed ID: 32721953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.
    Tang G; Fu X; Wang Z; Chen M
    Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system.
    Lv Z; Cao X; Jin X; Xu S; Deng H
    Sci Rep; 2023 Aug; 13(1):13364. PubMed ID: 37591969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis.
    Chen P; Zhang L; Cao X; Jin X; Chen N; Zhang L; Zhu J; Pan B; Wang B; Guo W
    Cancer; 2024 May; 130(10):1884-1893. PubMed ID: 38236717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears.
    Lewis JE; Shebelut CW; Drumheller BR; Zhang X; Shanmugam N; Attieh M; Horwath MC; Khanna A; Smith GH; Gutman DA; Aljudi A; Cooper LAD; Jaye DL
    Mod Pathol; 2023 Feb; 36(2):100003. PubMed ID: 36853796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a Machine Learning Algorithm for Identifying Abnormal Urothelial Cells: A Feasibility Study.
    Zhang Z; Fu X; Liu J; Huang Z; Liu N; Fang F; Rao J
    Acta Cytol; 2021; 65(4):335-341. PubMed ID: 33022673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks.
    Wang W; Luo M; Guo P; Wei Y; Tan Y; Shi H
    Comput Methods Programs Biomed; 2023 Apr; 231():107343. PubMed ID: 36821974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric evaluation of megakaryocytes in bone marrow aspirates of immune-mediated thrombocytopenic purpura.
    Deka L; Gupta S; Gupta R; Pant L; Kaur CJ; Singh S
    Platelets; 2013; 24(2):113-7. PubMed ID: 22462818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Establishment of morphological reference values for the differential count of white blood cells in peripheral blood smear, as well as nucleated cells and megakaryocytes in bone marrow smear].
    Wu P; Zhou LN; Xing Y; Sun HP; Wan LJ; Zhou CY; Zhang DD; Zhou XF; Zhang H; Chen MY; Wang YF; Wang NN; Liu WJ; Xu TL; Fu YW; Liu LJ; Yuan D; Chen M; Wang H
    Zhonghua Yi Xue Za Zhi; 2022 Feb; 102(7):506-512. PubMed ID: 35184504
    [No Abstract]   [Full Text] [Related]  

  • 13. Deep learning application of the discrimination of bone marrow aspiration cells in patients with myelodysplastic syndromes.
    Lee N; Jeong S; Park MJ; Song W
    Sci Rep; 2022 Nov; 12(1):18677. PubMed ID: 36333407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing and Preliminary Validating an Automatic Cell Classification System for Bone Marrow Smears: a Pilot Study.
    Jin H; Fu X; Cao X; Sun M; Wang X; Zhong Y; Yang S; Qi C; Peng B; He X; He F; Jiang Y; Gao H; Li S; Huang Z; Li Q; Fang F; Zhang J
    J Med Syst; 2020 Sep; 44(10):184. PubMed ID: 32894360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytomorphology of normal, reactive, dysmorphic, and dysplastic megakaryocytes in bone marrow aspirates.
    Zini G; Viscovo M
    Int J Lab Hematol; 2021 Jul; 43 Suppl 1():23-28. PubMed ID: 34288439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.
    Choi JW; Ku Y; Yoo BW; Kim JA; Lee DS; Chai YJ; Kong HJ; Kim HC
    PLoS One; 2017; 12(12):e0189259. PubMed ID: 29228051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital assessment of peripheral blood and bone marrow aspirate smears.
    Lewis JE; Pozdnyakova O
    Int J Lab Hematol; 2023 Jun; 45 Suppl 2():50-58. PubMed ID: 37211430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Bone Marrow Evaluation.
    Lewis JE; Pozdnyakova O
    Clin Lab Med; 2024 Sep; 44(3):431-440. PubMed ID: 39089749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type of smear may influence thrombopoietic cell counts in the bone marrow of clinically healthy dogs.
    Mylonakis ME; Day MJ; Leontides LS; Saridomichelakis MN; Koutinas AF; Polizopoulou Z; Petanides T; Farmaki R; Athanasiou L
    Vet Clin Pathol; 2005 Dec; 34(4):358-61. PubMed ID: 16270260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Evaluation of a Novel Artificial Intelligence-Assisted Digital Microscopy System for the Routine Analysis of Bone Marrow Aspirates.
    Bagg A; Raess PW; Rund D; Bhattacharyya S; Wiszniewska J; Horowitz A; Jengehino D; Fan G; Huynh M; Sanogo A; Avivi I; Katz BZ
    Mod Pathol; 2024 Sep; 37(9):100542. PubMed ID: 38897451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.