BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36700521)

  • 1. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes.
    Hirashima S; Park S; Sugiyama H
    Chemistry; 2023 Apr; 29(24):e202203961. PubMed ID: 36700521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes.
    Ghoneim M; Musselman CA
    J Fluoresc; 2023 Mar; 33(2):413-421. PubMed ID: 36435903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approach to the Investigation of Nucleosome Structure by Using the Highly Emissive Nucleobase
    Han JH; Park S; Hashiya F; Sugiyama H
    Chemistry; 2018 Nov; 24(64):17091-17095. PubMed ID: 30207401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.
    Bag SS; Das SK; Pradhan MK; Jana S
    J Photochem Photobiol B; 2016 Sep; 162():669-673. PubMed ID: 27498231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a FRET System in a Double-Stranded DNA Using Fluorescent Thymidine and Cytidine Analogs.
    Hirashima S; Sugiyama H; Park S
    J Phys Chem B; 2020 Oct; 124(40):8794-8800. PubMed ID: 32902276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-pair FRET experiments on nucleosome conformational dynamics.
    Buning R; van Noort J
    Biochimie; 2010 Dec; 92(12):1729-40. PubMed ID: 20800089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems.
    Börjesson K; Preus S; El-Sagheer AH; Brown T; Albinsson B; Wilhelmsson LM
    J Am Chem Soc; 2009 Apr; 131(12):4288-93. PubMed ID: 19317504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expedient placement of two fluorescent dyes for investigating dynamic DNA protein interactions in real time.
    Leuba SH; Anand SP; Harp JM; Khan SA
    Chromosome Res; 2008; 16(3):451-67. PubMed ID: 18461484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of nucleobase analogue FRET acceptor tCnitro.
    Preus S; Börjesson K; Kilså K; Albinsson B; Wilhelmsson LM
    J Phys Chem B; 2010 Jan; 114(2):1050-6. PubMed ID: 20039634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.
    Buning R; Kropff W; Martens K; van Noort J
    J Phys Condens Matter; 2015 Feb; 27(6):064103. PubMed ID: 25564102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone- and DNA sequence-dependent stability of nucleosomes studied by single-pair FRET.
    Tóth K; Böhm V; Sellmann C; Danner M; Hanne J; Berg M; Barz I; Gansen A; Langowski J
    Cytometry A; 2013 Sep; 83(9):839-46. PubMed ID: 23843180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in quantitative FRET-based methods for studying nucleic acids.
    Preus S; Wilhelmsson LM
    Chembiochem; 2012 Sep; 13(14):1990-2001. PubMed ID: 22936620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-pair FRET microscopy reveals mononucleosome dynamics.
    Koopmans WJ; Brehm A; Logie C; Schmidt T; van Noort J
    J Fluoresc; 2007 Nov; 17(6):785-95. PubMed ID: 17609864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete Kinetic Theory of FRET.
    Eilert T; Kallis E; Nagy J; Röcker C; Michaelis J
    J Phys Chem B; 2018 Dec; 122(49):11677-11694. PubMed ID: 30351105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering mononucleosomes for single-pair FRET experiments.
    Koopmans WJ; Buning R; van Noort J
    Methods Mol Biol; 2011; 749():291-303. PubMed ID: 21674380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study.
    Oleinikov PD; Fedulova AS; Armeev GA; Motorin NA; Singh-Palchevskaia L; Sivkina AL; Feskin PG; Glukhov GS; Afonin DA; Komarova GA; Kirpichnikov MP; Studitsky VM; Feofanov AV; Shaytan AK
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural variability of nucleosomes detected by single-pair Förster resonance energy transfer: histone acetylation, sequence variation, and salt effects.
    Gansen A; Tóth K; Schwarz N; Langowski J
    J Phys Chem B; 2009 Mar; 113(9):2604-13. PubMed ID: 18950220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM; Wang YT; Chen CL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.
    Peulen TO; Opanasyuk O; Seidel CAM
    J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.