BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36700612)

  • 1. Highly Sensitive and Selective Real-Time Breath Isoprene Detection using the Gas Reforming Reaction of MOF-Derived Nanoreactors.
    Park SJ; Moon YK; Park SW; Lee SM; Kim TH; Kim SY; Lee JH; Jo YM
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7102-7111. PubMed ID: 36700612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO
    Park SW; Jeong SY; Moon YK; Kim K; Yoon JW; Lee JH
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11587-11596. PubMed ID: 35174700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative Nanosensor for Disease Diagnosis.
    Kim SJ; Choi SJ; Jang JS; Cho HJ; Kim ID
    Acc Chem Res; 2017 Jul; 50(7):1587-1596. PubMed ID: 28481075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed Potential Type Isoprene Sensor for the Application in Real-Time Monitoring of Biomarker Gases.
    Jiang L; Li Q; Lv S; Wang B; Pan S; Sun P; Zheng J; Liu F; Lu G
    ACS Sens; 2024 Mar; 9(3):1575-1583. PubMed ID: 38483350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale PdO Catalyst Functionalized Co
    Koo WT; Yu S; Choi SJ; Jang JS; Cheong JY; Kim ID
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8201-8210. PubMed ID: 28207233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Selective and Rapid Breath Isoprene Sensing Enabled by Activated Alumina Filter.
    van den Broek J; Güntner AT; Pratsinis SE
    ACS Sens; 2018 Mar; 3(3):677-683. PubMed ID: 29443518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas Selectivity Control in Co
    Jeong HM; Jeong SY; Kim JH; Kim BY; Kim JS; Abdel-Hady F; Wazzan AA; Al-Turaif HA; Jang HW; Lee JH
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41397-41404. PubMed ID: 29112803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humidity-Independent Oxide Semiconductor Chemiresistors Using Terbium-Doped SnO
    Kwak CH; Kim TH; Jeong SY; Yoon JW; Kim JS; Lee JH
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18886-18894. PubMed ID: 29767956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemiresistive Electronic Nose toward Detection of Biomarkers in Exhaled Breath.
    Moon HG; Jung Y; Han SD; Shim YS; Shin B; Lee T; Kim JS; Lee S; Jun SC; Park HH; Kim C; Kang CY
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20969-76. PubMed ID: 27456161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An exploratory study on online quantification of isoprene in human breath using cavity ringdown spectroscopy in the ultraviolet.
    Li Q; Li J; Wei X; Li Y; Sun M
    Anal Chim Acta; 2020 Sep; 1131():18-24. PubMed ID: 32928476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the determination of isoprene in human breath using substrate-integrated hollow waveguide mid-infrared sensors.
    Perez-Guaita D; Kokoric V; Wilk A; Garrigues S; Mizaikoff B
    J Breath Res; 2014 Jun; 8(2):026003. PubMed ID: 24848160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can breath isoprene be measured by ozone chemiluminescence?
    Ohira S; Li J; Lonneman WA; Dasgupta PK; Toda K
    Anal Chem; 2007 Apr; 79(7):2641-9. PubMed ID: 17326613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic Frameworks-Derived Hierarchical Co
    Zhang R; Zhou T; Wang L; Zhang T
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9765-9773. PubMed ID: 29341589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of breath isoprene allows the identification of the expiratory fraction of the propofol breath signal during real-time propofol breath monitoring.
    Hornuss C; Dolch ME; Janitza S; Souza K; Praun S; Apfel CC; Schelling G
    J Clin Monit Comput; 2013 Oct; 27(5):509-16. PubMed ID: 23525901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.
    Iwata T; Katagiri T; Matsuura Y
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Oxide Nanorods-Based Sensor Array for Selective Detection of Biomarker Gases.
    Kim GS; Park Y; Shin J; Song YG; Kang CY
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data.
    Schwoebel H; Schubert R; Sklorz M; Kischkel S; Zimmermann R; Schubert JK; Miekisch W
    Anal Bioanal Chem; 2011 Oct; 401(7):2079-91. PubMed ID: 21706328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies.
    André L; Desbois N; Gros CP; Brandès S
    Dalton Trans; 2020 Nov; 49(43):15161-15170. PubMed ID: 33063796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives.
    Yoon JW; Lee JH
    Lab Chip; 2017 Oct; 17(21):3537-3557. PubMed ID: 28971204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-Conductive Gas Sensor: a New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath.
    Zhao H; Liu L; Lin X; Dai J; Liu S; Fei T; Zhang T
    ACS Sens; 2020 Feb; 5(2):346-352. PubMed ID: 31793289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.