These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36700684)
1. Tuning metabolic efficiency for increased product yield in high titer fed-batch Chinese hamster ovary cell culture. Helfer A; Gros S; Kolwyck D; Karst DJ Biotechnol Prog; 2023; 39(3):e3327. PubMed ID: 36700684 [TBL] [Abstract][Full Text] [Related]
2. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality. Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O Biotechnol Prog; 2018 Mar; 34(2):494-504. PubMed ID: 29314777 [TBL] [Abstract][Full Text] [Related]
3. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Kyriakopoulos S; Kontoravdi C Biotechnol Bioeng; 2014 Dec; 111(12):2466-76. PubMed ID: 24975682 [TBL] [Abstract][Full Text] [Related]
4. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
5. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Kim DY; Chaudhry MA; Kennard ML; Jardon MA; Braasch K; Dionne B; Butler M; Piret JM Biotechnol Prog; 2013; 29(1):165-75. PubMed ID: 23125190 [TBL] [Abstract][Full Text] [Related]
6. Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Mulukutla BC; Kale J; Kalomeris T; Jacobs M; Hiller GW Biotechnol Bioeng; 2017 Aug; 114(8):1779-1790. PubMed ID: 28409820 [TBL] [Abstract][Full Text] [Related]
7. Feed development for fed-batch CHO production process by semisteady state analysis. Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Toussaint C; Henry O; Durocher Y J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123 [TBL] [Abstract][Full Text] [Related]
9. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
10. Progress in fed-batch culture for recombinant protein production in CHO cells. Xu WJ; Lin Y; Mi CL; Pang JY; Wang TY Appl Microbiol Biotechnol; 2023 Feb; 107(4):1063-1075. PubMed ID: 36648523 [TBL] [Abstract][Full Text] [Related]
11. Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. Chitwood DG; Wang Q; Elliott K; Bullock A; Jordana D; Li Z; Wu C; Harcum SW; Saski CA BMC Biotechnol; 2021 Jan; 21(1):4. PubMed ID: 33419422 [TBL] [Abstract][Full Text] [Related]
12. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. Yongky A; Xu J; Tian J; Oliveira C; Zhao J; McFarland K; Borys MC; Li ZJ MAbs; 2019; 11(8):1502-1514. PubMed ID: 31379298 [TBL] [Abstract][Full Text] [Related]
13. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Hiller GW; Ovalle AM; Gagnon MP; Curran ML; Wang W Biotechnol Bioeng; 2017 Jul; 114(7):1438-1447. PubMed ID: 28128436 [TBL] [Abstract][Full Text] [Related]
14. Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding. W Eyster T; Talwar S; Fernandez J; Foster S; Hayes J; Allen R; Reidinger S; Wan B; Ji X; Aon J; Patel P; Ritz DB Biotechnol Prog; 2021 Jan; 37(1):e3085. PubMed ID: 32975043 [TBL] [Abstract][Full Text] [Related]
15. Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures. Zhang X; Jiang R; Lin H; Xu S Biotechnol Prog; 2020 Jul; 36(4):e2975. PubMed ID: 32012447 [TBL] [Abstract][Full Text] [Related]
16. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053 [TBL] [Abstract][Full Text] [Related]
17. Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production. Mahé A; Martiné A; Fagète S; Girod PA Bioprocess Biosyst Eng; 2022 Feb; 45(2):297-307. PubMed ID: 34750672 [TBL] [Abstract][Full Text] [Related]
18. Developing an ultra-intensified fed-batch cell culture process with greatly improved performance and productivity. Xiang S; Zhang J; Yu L; Tian J; Tang W; Tang H; Xu K; Wang X; Cui Y; Ren K; Cao W; Su Y; Zhou W Biotechnol Bioeng; 2024 Feb; 121(2):696-709. PubMed ID: 37994547 [TBL] [Abstract][Full Text] [Related]
19. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810 [TBL] [Abstract][Full Text] [Related]
20. Understanding the effect of temperature downshift on CHO cell growth, antibody titer and product quality by intracellular metabolite profiling and in vivo monitoring of redox state. Zhu Z; Chen X; Li W; Zhuang Y; Zhao Y; Wang G Biotechnol Prog; 2023; 39(4):e3352. PubMed ID: 37141532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]