These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36700729)

  • 1. First-Principles Microkinetic Modeling Unravelling the Performance of Edge-Decorated Nanocarbons for Hydrogen Production from Methane.
    Xavier NF; Bauerfeldt GF; Sacchi M
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6951-6962. PubMed ID: 36700729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical insights into the methane catalytic decomposition on graphene nanoribbons edges.
    Xavier NF; Payne AJR; Bauerfeldt GF; Sacchi M
    Front Chem; 2023; 11():1172687. PubMed ID: 37324559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Selective and Efficient Electrocatalytic Activity for CO
    Sun X
    Front Chem; 2021; 9():734460. PubMed ID: 34490215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Free Carbocatalysis in Advanced Oxidation Reactions.
    Duan X; Sun H; Wang S
    Acc Chem Res; 2018 Mar; 51(3):678-687. PubMed ID: 29494126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling.
    Shao K; Mesbah A
    JACS Au; 2024 Feb; 4(2):525-544. PubMed ID: 38425907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative theoretical study of CO oxidation reaction by O2 molecule over Al- or Si-decorated graphene oxide.
    Esrafili MD; Sharifi F; Nematollahi P
    J Mol Graph Model; 2016 Sep; 69():8-16. PubMed ID: 27525814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic CO oxidation reaction over N-substituted graphene nanoribbon with edge defects.
    Esrafili MD; Mousavian P
    J Mol Graph Model; 2021 Nov; 108():108006. PubMed ID: 34388401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction.
    Kumatani A; Miura C; Kuramochi H; Ohto T; Wakisaka M; Nagata Y; Ida H; Takahashi Y; Hu K; Jeong S; Fujita JI; Matsue T; Ito Y
    Adv Sci (Weinh); 2019 May; 6(10):1900119. PubMed ID: 31131204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen Fixation at the Edges of Boron Nitride Nanomaterials: Synergy of Doping.
    Choutipalli VSK; Esackraj K; Subramanian V
    Front Chem; 2021; 9():799903. PubMed ID: 35127647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling.
    Xie W; Xu J; Chen J; Wang H; Hu P
    Acc Chem Res; 2022 May; 55(9):1237-1248. PubMed ID: 35442027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcing the tetracene-based two-dimensional C
    Subramani M; Rajamani A; Subramaniam V; Hatshan MR; Gopi S; Ramasamy S
    Environ Res; 2022 Mar; 204(Pt B):112114. PubMed ID: 34571036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide.
    Habibi P; Vlugt TJH; Dey P; Moultos OA
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43233-43240. PubMed ID: 34459595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promotional Effect of H
    Liu Z; Yang J; Wen Y; Lan Y; Guo L; Chen X; Cao K; Chen R; Shan B
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27762-27774. PubMed ID: 35674013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric and electronic properties of edge-decorated graphene nanoribbons.
    Chang SL; Lin SY; Lin SK; Lee CH; Lin MF
    Sci Rep; 2014 Aug; 4():6038. PubMed ID: 25123103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites.
    Zhang LH; Shi Y; Wang Y; Shiju NR
    Adv Sci (Weinh); 2020 Mar; 7(5):1902126. PubMed ID: 32154069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production.
    Sa YJ; Kim JH; Joo SH
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1100-1105. PubMed ID: 30548090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-Catalysis of Nonoxidative Methane Coupling: A Dynamic Investigation of Plasma and Surface Microkinetics over Ni(111).
    Maitre PA; Bieniek MS; Kechagiopoulos PN
    J Phys Chem C Nanomater Interfaces; 2022 Dec; 126(47):19987-20003. PubMed ID: 36483684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of active sites of B/N co-doped nanocarbons in selective oxidation of benzyl alcohol.
    Li S; Zhang X; Huang X; Wu S; Xie Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2801-2808. PubMed ID: 34785046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning low-temperature CO oxidation activities
    Chen T; Ji Y; Ding YM; Li Y
    Phys Chem Chem Phys; 2022 Dec; 24(48):29586-29593. PubMed ID: 36448576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.