These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36700929)

  • 1. Organocalcium-Complex-Catalyzed Dehydrogenative Silylation and Mono/Dihydrosilylation Tandem Reactions of Terminal Alkynes.
    Li T; Liu R; Liu X; Chen Y
    Org Lett; 2023 Feb; 25(5):761-765. PubMed ID: 36700929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium triethylborohydride as a catalyst for the dehydrogenative silylation of terminal alkynes with hydrosilanes.
    Skrodzki M; Witomska S; Pawluć P
    Dalton Trans; 2018 May; 47(17):5948-5951. PubMed ID: 29632924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B(C
    Ma Y; Lou SJ; Luo G; Luo Y; Zhan G; Nishiura M; Luo Y; Hou Z
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15222-15226. PubMed ID: 30255604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt-Catalyzed Dehydrogenative C-H Silylation of Alkynylsilanes.
    Stachowiak H; Kuciński K; Kallmeier F; Kempe R; Hreczycho G
    Chemistry; 2022 Jan; 28(1):e202103629. PubMed ID: 34634167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Borane-catalyzed selective dihydrosilylation of terminal alkynes: reaction development and mechanistic insight.
    Wang G; Su X; Gao L; Liu X; Li G; Li S
    Chem Sci; 2021 Aug; 12(32):10883-10892. PubMed ID: 34476068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver-Catalyzed Activation of Terminal Alkynes for Synthesizing Nitrogen-Containing Molecules.
    Sivaguru P; Cao S; Babu KR; Bi X
    Acc Chem Res; 2020 Mar; 53(3):662-675. PubMed ID: 32078302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Computational Studies of the Iron-Catalyzed Selective and Controllable Defluorosilylation of Unactivated Aliphatic gem-Difluoroalkenes.
    Zhang H; Wang E; Geng S; Liu Z; He Y; Peng Q; Feng Z
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):10211-10218. PubMed ID: 33555634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Selectivity of AuPd Nanoalloys towards Selective Dehydrogenative Alkyne Silylation.
    Wissing M; Studer A
    Chemistry; 2019 Apr; 25(23):5870-5874. PubMed ID: 30719758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt-Catalyzed One-Pot Asymmetric Difunctionalization of Alkynes to Access Chiral gem-(Borylsilyl)alkanes.
    You Y; Ge S
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20684-20688. PubMed ID: 34223687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective Aerobic Cross-Dehydrogenative Coupling of Terminal Alkynes with Hydrosilanes by a Nanoporous Gold Catalyst.
    Kavthe RD; Ishikawa Y; Kusuma I; Asao N
    Chemistry; 2018 Oct; 24(59):15777-15780. PubMed ID: 30160333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective dehydrogenative silylation of alkenes catalyzed by rhenium complexes.
    Jiang Y; Blacque O; Fox T; Frech CM; Berke H
    Chemistry; 2009; 15(9):2121-8. PubMed ID: 19137560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrogenative Silylation of Alcohols Under Pd-Nanoparticle Catalysis.
    Pramanik S; Fernandes A; Liautard V; Pucheault M; Robert F; Landais Y
    Chemistry; 2019 Jan; 25(3):728-732. PubMed ID: 30351531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ru-Catalyzed Dehydrogenative Silylation of POSS-Silanols with Hydrosilanes: Its Introduction to One-Pot Synthesis.
    Kaźmierczak J; Kuciński K; Lewandowski D; Hreczycho G
    Inorg Chem; 2019 Jan; 58(2):1201-1207. PubMed ID: 30629423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes.
    Jin S; Li J; Liu K; Ding WY; Wang S; Huang X; Li X; Yu P; Song Q
    Nat Commun; 2022 Jun; 13(1):3524. PubMed ID: 35725731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium(II)-Catalyzed Dehydrogenative Silylation of Biaryl-Type Monophosphines with Hydrosilanes.
    Wang D; Zhao Y; Yuan C; Wen J; Zhao Y; Shi Z
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12529-12533. PubMed ID: 31286601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iridium-catalyzed, diastereoselective dehydrogenative silylation of terminal alkenes with (TMSO)2MeSiH.
    Cheng C; Simmons EM; Hartwig JF
    Angew Chem Int Ed Engl; 2013 Aug; 52(34):8984-9. PubMed ID: 23857914
    [No Abstract]   [Full Text] [Related]  

  • 17. 14-Electron Rh and Ir silylphosphine complexes and their catalytic activity in alkene functionalization with hydrosilanes.
    Abeynayake NS; Zamora-Moreno J; Gorla S; Donnadieu B; Muñoz-Hernández MA; Montiel-Palma V
    Dalton Trans; 2021 Sep; 50(34):11783-11792. PubMed ID: 34368827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Transfer Deuteration and Hydrodeuteration: Emerging Techniques to Selectively Transform Alkenes and Alkynes to Deuterated Alkanes.
    Vang ZP; Hintzsche SJ; Clark JR
    Chemistry; 2021 Jul; 27(39):9988-10000. PubMed ID: 33979460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium-catalyzed dehydrogenative coupling of phenylheteroarenes with alkynes or alkenes.
    Iitsuka T; Hirano K; Satoh T; Miura M
    J Org Chem; 2015 Mar; 80(5):2804-14. PubMed ID: 25686408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu-catalyzed silylation of alkynes: a traceless 2-pyridylsulfonyl controller allows access to either regioisomer on demand.
    García-Rubia A; Romero-Revilla JA; Mauleón P; Gómez Arrayás R; Carretero JC
    J Am Chem Soc; 2015 Jun; 137(21):6857-65. PubMed ID: 25955333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.