These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36701125)

  • 1. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning.
    Patel RA; Webb MA
    ACS Appl Bio Mater; 2024 Feb; 7(2):510-527. PubMed ID: 36701125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery.
    Gong D; Ben-Akiva E; Singh A; Yamagata H; Est-Witte S; Shade JK; Trayanova NA; Green JJ
    Acta Biomater; 2022 Dec; 154():349-358. PubMed ID: 36206976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Biomaterial Complexity by Machine Learning.
    Ahmed E; Mulay P; Ramirez C; Tirado-Mansilla G; Cheong E; Gormley AJ
    Tissue Eng Part A; 2024 Oct; 30(19-20):662-680. PubMed ID: 39135398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Driven Biomaterials Evolution.
    Suwardi A; Wang F; Xue K; Han MY; Teo P; Wang P; Wang S; Liu Y; Ye E; Li Z; Loh XJ
    Adv Mater; 2022 Jan; 34(1):e2102703. PubMed ID: 34617632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial and high-throughput screening of materials libraries: review of state of the art.
    Potyrailo R; Rajan K; Stoewe K; Takeuchi I; Chisholm B; Lam H
    ACS Comb Sci; 2011 Nov; 13(6):579-633. PubMed ID: 21644562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications.
    Yi Y; An HW; Wang H
    Adv Mater; 2024 May; 36(22):e2305099. PubMed ID: 37490938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Cover Persistence (MCP)-based machine learning for polymer property prediction.
    Zhang Y; Shen C; Xia K
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39323091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on development of biomedical polymer materials in artificial intelligence age.
    Xie S
    J Biomater Appl; 2023 Mar; 37(8):1355-1375. PubMed ID: 36629787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers.
    Pilania G; Iverson CN; Lookman T; Marrone BL
    J Chem Inf Model; 2019 Dec; 59(12):5013-5025. PubMed ID: 31697891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
    Groen N; Guvendiren M; Rabitz H; Welsh WJ; Kohn J; de Boer J
    Acta Biomater; 2016 Apr; 34():133-142. PubMed ID: 26876875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applied machine learning as a driver for polymeric biomaterials design.
    McDonald SM; Augustine EK; Lanners Q; Rudin C; Catherine Brinson L; Becker ML
    Nat Commun; 2023 Aug; 14(1):4838. PubMed ID: 37563117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design.
    Nguyen D; Tao L; Li Y
    Front Chem; 2021; 9():820417. PubMed ID: 35141207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to the rationale discovery of polymeric biomaterials.
    Kohn J; Welsh WJ; Knight D
    Biomaterials; 2007 Oct; 28(29):4171-7. PubMed ID: 17644176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design Concept of Dialyzer Biomaterials: How to Find Biocompatible Polymers Based on the Biointerfacial Water Structure.
    Tanaka M
    Contrib Nephrol; 2017; 189():137-143. PubMed ID: 27951561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning and big data provide crucial insight for future biomaterials discovery and research.
    Kerner J; Dogan A; von Recum H
    Acta Biomater; 2021 Aug; 130():54-65. PubMed ID: 34087445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Assessment and Modeling of a Polymer Library Regulating Human Dental Pulp-Derived Stem Cell Behavior.
    Rasi Ghaemi S; Delalat B; Gronthos S; Alexander MR; Winkler DA; Hook AL; Voelcker NH
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38739-38748. PubMed ID: 30351898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial Synthesis of and high-throughput protein release from polymer film and nanoparticle libraries.
    Petersen LK; Chavez-Santoscoy AV; Narasimhan B
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22987047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning in drug delivery.
    Gormley AJ
    J Control Release; 2024 Sep; 373():23-30. PubMed ID: 38909704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning in Tissue Engineering.
    Guo JL; Januszyk M; Longaker MT
    Tissue Eng Part A; 2023 Jan; 29(1-2):2-19. PubMed ID: 35943870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.