These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 36701283)
1. Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights. Chatterjee S; Adak A; Wilde S; Nakasagga S; Murray SC PLoS One; 2023; 18(1):e0277804. PubMed ID: 36701283 [TBL] [Abstract][Full Text] [Related]
2. Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. DeSalvio AJ; Adak A; Murray SC; Wilde SC; Isakeit T Sci Rep; 2022 May; 12(1):7571. PubMed ID: 35534655 [TBL] [Abstract][Full Text] [Related]
3. Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing period in maize. Adak A; Murray SC; Anderson SL; Popescu SC; Malambo L; Romay MC; de Leon N Plant Genome; 2021 Jul; 14(2):e20102. PubMed ID: 34009740 [TBL] [Abstract][Full Text] [Related]
4. Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.). Trachsel S; Dhliwayo T; Gonzalez Perez L; Mendoza Lugo JA; Trachsel M PLoS One; 2019; 14(3):e0212200. PubMed ID: 30893307 [TBL] [Abstract][Full Text] [Related]
5. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize. Adak A; DeSalvio AJ; Arik MA; Murray SC G3 (Bethesda); 2024 Jul; 14(7):. PubMed ID: 38776257 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal modeling of high-throughput multispectral aerial images improves agronomic trait genomic prediction in hybrid maize. Morales N; Anche MT; Kaczmar NS; Lepak N; Ni P; Romay MC; Santantonio N; Buckler ES; Gore MA; Mueller LA; Robbins KR Genetics; 2024 May; 227(1):. PubMed ID: 38469622 [TBL] [Abstract][Full Text] [Related]
7. Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions. Zhao L; Liu Z; Xu S; He X; Ni Z; Zhao H; Ren S Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445752 [TBL] [Abstract][Full Text] [Related]
8. Temporal covariance structure of multi-spectral phenotypes and their predictive ability for end-of-season traits in maize. Anche MT; Kaczmar NS; Morales N; Clohessy JW; Ilut DC; Gore MA; Robbins KR Theor Appl Genet; 2020 Oct; 133(10):2853-2868. PubMed ID: 32613265 [TBL] [Abstract][Full Text] [Related]
9. Validation of functional polymorphisms affecting maize plant height by unoccupied aerial systems discovers novel temporal phenotypes. Adak A; Conrad C; Chen Y; Wilde SC; Murray SC; Anderson Ii SL; Subramanian NK G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33822935 [TBL] [Abstract][Full Text] [Related]
10. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615 [TBL] [Abstract][Full Text] [Related]
11. Radiation use efficiency increased over a century of maize (Zea mays L.) breeding in the US corn belt. Messina CD; Rotundo J; Hammer GL; Gho C; Reyes A; Fang Y; van Oosterom E; Borras L; Cooper M J Exp Bot; 2022 Sep; 73(16):5503-5513. PubMed ID: 35640591 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment. Pipatsitee P; Tisarum R; Taota K; Samphumphuang T; Eiumnoh A; Singh HP; Cha-Um S Environ Monit Assess; 2022 Nov; 195(1):128. PubMed ID: 36402920 [TBL] [Abstract][Full Text] [Related]
13. Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions. Adak A; Murray SC; Anderson SL G3 (Bethesda); 2023 Jan; 13(1):. PubMed ID: 36445027 [TBL] [Abstract][Full Text] [Related]
14. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
15. Predicting Wu G; Miller ND; de Leon N; Kaeppler SM; Spalding EP Front Plant Sci; 2019; 10():1251. PubMed ID: 31681364 [TBL] [Abstract][Full Text] [Related]
16. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping. Nguyen C; Sagan V; Bhadra S; Moose S Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425 [TBL] [Abstract][Full Text] [Related]
17. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. Wei H; Zhao Y; Xie Y; Wang H J Exp Bot; 2018 Sep; 69(20):4675-4688. PubMed ID: 29992284 [TBL] [Abstract][Full Text] [Related]
18. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Vergara-Díaz O; Zaman-Allah MA; Masuka B; Hornero A; Zarco-Tejada P; Prasanna BM; Cairns JE; Araus JL Front Plant Sci; 2016; 7():666. PubMed ID: 27242867 [TBL] [Abstract][Full Text] [Related]