These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36701342)

  • 1. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure.
    Chen Z; Li T; Guo S; Zeng D; Wang K
    Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study.
    Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W
    Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning.
    Yang B; Zhu Y; Lu X; Shen C
    Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models.
    Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z
    Front Public Health; 2022; 10():1086339. PubMed ID: 36711330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury.
    Neyra JA; Ortiz-Soriano V; Liu LJ; Smith TD; Li X; Xie D; Adams-Huet B; Moe OW; Toto RD; Chen J
    Am J Kidney Dis; 2023 Jan; 81(1):36-47. PubMed ID: 35868537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU.
    Xie W; Li Y; Meng X; Zhao M
    Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study.
    Lei M; Han Z; Wang S; Han T; Fang S; Lin F; Huang T
    Injury; 2023 Feb; 54(2):636-644. PubMed ID: 36414503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis.
    Liu C; Liu X; Mao Z; Hu P; Li X; Hu J; Hong Q; Geng X; Chi K; Zhou F; Cai G; Chen X; Sun X
    Med Sci Sports Exerc; 2021 Sep; 53(9):1826-1834. PubMed ID: 33787533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan.
    Hu CA; Chen CM; Fang YC; Liang SJ; Wang HC; Fang WF; Sheu CC; Perng WC; Yang KY; Kao KC; Wu CL; Tsai CS; Lin MY; Chao WC;
    BMJ Open; 2020 Feb; 10(2):e033898. PubMed ID: 32102816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan.
    Pai KC; Su SA; Chan MC; Wu CL; Chao WC
    BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan.
    Chan MC; Pai KC; Su SA; Wang MS; Wu CL; Chao WC
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):75. PubMed ID: 35337303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Prediction Models for Mechanically Ventilated Patients: Analyses of the MIMIC-III Database.
    Zhu Y; Zhang J; Wang G; Yao R; Ren C; Chen G; Jin X; Guo J; Liu S; Zheng H; Chen Y; Guo Q; Li L; Du B; Xi X; Li W; Huang H; Li Y; Yu Q
    Front Med (Lausanne); 2021; 8():662340. PubMed ID: 34277655
    [No Abstract]   [Full Text] [Related]  

  • 18. ACEI/ARB Medication During ICU Stay Decrease All-Cause In-hospital Mortality in Critically Ill Patients With Hypertension: A Retrospective Cohort Study Based on Machine Learning.
    Yang B; Xu S; Wang D; Chen Y; Zhou Z; Shen C
    Front Cardiovasc Med; 2021; 8():787740. PubMed ID: 35097006
    [No Abstract]   [Full Text] [Related]  

  • 19. Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury.
    Luo XQ; Yan P; Duan SB; Kang YX; Deng YH; Liu Q; Wu T; Wu X
    Front Med (Lausanne); 2022; 9():853102. PubMed ID: 35783603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning.
    Liu W; Ma W; Bai N; Li C; Liu K; Yang J; Zhang S; Zhu K; Zhou Q; Liu H; Guo J; Li L
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 35993194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.