These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 36701342)

  • 21. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan.
    Hu CA; Chen CM; Fang YC; Liang SJ; Wang HC; Fang WF; Sheu CC; Perng WC; Yang KY; Kao KC; Wu CL; Tsai CS; Lin MY; Chao WC;
    BMJ Open; 2020 Feb; 10(2):e033898. PubMed ID: 32102816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study.
    Nistal-Nuño B
    Einstein (Sao Paulo); 2024; 22():eAO0467. PubMed ID: 39417479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study.
    Tang D; Ma C; Xu Y
    Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury.
    Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L
    Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan.
    Pai KC; Su SA; Chan MC; Wu CL; Chao WC
    BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury.
    Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M
    PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database.
    Guo J; Cheng H; Wang Z; Qiao M; Li J; Lyu J
    Front Neurol; 2023; 14():1290117. PubMed ID: 38162445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning Prediction Models for Mechanically Ventilated Patients: Analyses of the MIMIC-III Database.
    Zhu Y; Zhang J; Wang G; Yao R; Ren C; Chen G; Jin X; Guo J; Liu S; Zheng H; Chen Y; Guo Q; Li L; Du B; Xi X; Li W; Huang H; Li Y; Yu Q
    Front Med (Lausanne); 2021; 8():662340. PubMed ID: 34277655
    [No Abstract]   [Full Text] [Related]  

  • 31. Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm.
    Ren W; Zou K; Huang S; Xu H; Zhang W; Shi X; Shi L; Zhong X; Peng Y; Tang X; Lü M
    J Clin Gastroenterol; 2024 Jul; 58(6):619-626. PubMed ID: 37712768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study.
    Kim YK; Seo WD; Lee SJ; Koo JH; Kim GC; Song HS; Lee M
    J Med Internet Res; 2024 Sep; 26():e62890. PubMed ID: 39288404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ACEI/ARB Medication During ICU Stay Decrease All-Cause In-hospital Mortality in Critically Ill Patients With Hypertension: A Retrospective Cohort Study Based on Machine Learning.
    Yang B; Xu S; Wang D; Chen Y; Zhou Z; Shen C
    Front Cardiovasc Med; 2021; 8():787740. PubMed ID: 35097006
    [No Abstract]   [Full Text] [Related]  

  • 34. Machine learning algorithm to predict the in-hospital mortality in critically ill patients with chronic kidney disease.
    Li X; Zhu Y; Zhao W; Shi R; Wang Z; Pan H; Wang D
    Ren Fail; 2023 Dec; 45(1):2212790. PubMed ID: 37203863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning.
    Sun Y; He Z; Ren J; Wu Y
    BMC Anesthesiol; 2023 May; 23(1):178. PubMed ID: 37231340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early prediction of acute kidney injury in patients with gastrointestinal bleeding admitted to the intensive care unit based on extreme gradient boosting.
    Shi H; Shen Y; Li L
    Front Med (Lausanne); 2023; 10():1221602. PubMed ID: 37720504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury.
    Luo XQ; Yan P; Duan SB; Kang YX; Deng YH; Liu Q; Wu T; Wu X
    Front Med (Lausanne); 2022; 9():853102. PubMed ID: 35783603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upper gastrointestinal haemorrhage patients' survival: A causal inference and prediction study.
    Deng F; Cao Y; Zhao S
    Eur J Clin Invest; 2024 Jun; 54(6):e14180. PubMed ID: 38376066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning.
    Liu W; Ma W; Bai N; Li C; Liu K; Yang J; Zhang S; Zhu K; Zhou Q; Liu H; Guo J; Li L
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 35993194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.